ISO 17025 LABORATORY TESTING CERT \# 2937.01

# TESTING AND EVALUATION OF MASH TL-3 TRANSITION BETWEEN GUARDRAIL AND PORTABLE CONCRETE BARRIERS 

Submitted by

Robert W. Bielenberg, M.S.M.E., E.I.T.
Research Associate Engineer
Justine E. Kohtz, B.S.M.E.
CAD Technician

Jessica L. Lingenfelter<br>Undergraduate Research Assistant

Ronald K. Faller, Ph.D., P.E.
Research Associate Professor
MwRSF Director

John D. Reid, Ph.D.
Professor

MIDWEST ROADSIDE SAFETY FACILITY<br>Nebraska Transportation Center<br>University of Nebraska-Lincoln<br>130 Whittier Research Center<br>2200 Vine Street<br>Lincoln, Nebraska 68583-0853<br>(402) 472-0965

Submitted to

NEBRASKA DEPARTMENT OF ROADS
1500 Nebraska Highway 2
Lincoln, Nebraska 68502

SMART WORK ZONE DEPLOYMENT INITIATIVE
Iowa State University
2711 S. Loop Drive, Suite 4700
Ames, Iowa 50010-8664

Sponsored by

Research Project No. TPF-5(193) Supplement \#76

SMART WORK ZONE DEPLOYMENT INITIATIVE
(TPF-5(295) Contract No. 16347)

## TECHNICAL REPORT DOCUMENTATION PAGE

| $\begin{aligned} & \text { 1. Report No. } \\ & \text { TRP-03-335-17 } \end{aligned}$ | 2. | 3. Recipient's Acce |  |
| :---: | :---: | :---: | :---: |
| 4. Title and Subtitle <br> Testing and Evaluation of MASH TL-3 Transition Between Guardrail and Portable Concrete Barriers |  | 5. Report Date May 2, 2017 |  |
|  |  | 6. |  |
| 7. Author(s) <br> Bielenberg, R.W., Lingenfelter, J.L., Kohtz, J.E., Faller, R.K., and Reid, J.D. |  | 8. Performing Organization Report No. TRP-03-335-17 |  |
| 9. Performing Organization Name and Address <br> Midwest Roadside Safety Facility (MwRSF) <br> Nebraska Transportation Center <br> University of Nebraska-Lincoln <br> 130 Whittier Research Center <br> 2200 Vine Street <br> Lincoln, Nebraska 68583-0853 |  | 11. Contract © or Grant (G) No. <br> NDOR: TPF-5(193) Supplement \#76 <br> SWZDI: TPF-5(295) Contract No. 16347 |  |
| 12. Sponsoring Organization Name and Address  <br> Nebraska Department of Roads Smart Work Zone Deployment <br> 1500 Nebraska Highway 2 Initiative <br> Lincoln, Nebraska 68502 Iowa Department of Transportation <br>  800 Lincoln Way <br> Federal Highway Administration Ames, Iowa 50010 <br> U.S. Department of Transportation  <br> 1200 New Jersey Avenue SE  <br> Washington, DC 20590  |  | 14. Sponsoring Agency Code |  |
| 15. Supplementary Notes <br> Prepared in cooperation with U.S. Department of Transportation, Federal Highway Administration. |  |  |  |
| 16. Abstract <br> Three full-scale vehicle crash tests were conducted according to the Manuc 3) safety performance criteria on a transition between the Midwest Guardra The transition system utilized for test nos. MGSPCB-1 through MGSPCB shape PCB segments that approached the MGS at a $15 \mathrm{H}: 1 \mathrm{~V}$ flare. In the blockout holders and a specialized W-beam end shoe mounting bracket we <br> In test no. MGSPCB-1, a 5,079-lb (2,304-kg) pickup truck impacted the captured and redirected the 2270 P vehicle, and the vehicle decelerations MGSPCB-2, a $2,601-\mathrm{lb}(1,180-\mathrm{kg})$ car impacted the barrier at $65.1 \mathrm{mph}(10$ the 1100 C vehicle, and the vehicle decelerations were within the recomm $(2,348-\mathrm{kg})$ pickup truck impacted the barrier at $63.1 \mathrm{mph}(101.5 \mathrm{~km} / \mathrm{h})$ and reverse direction. The barrier captured and redirected the 2270 P vehicle, occupant risk limits. <br> Based on the results of these successful crash tests, it is believed that the 3 crashworthy transition between the MGS and PCBs. <br> 17. Document Analysis/Descriptors <br> Highway Safety, Crash Test, Roadside Appurtenances, Compliance Test, MASH, Guardrail, MGS, PCB, Stiffness Transition, Concrete Barrier |  | al for Assessing Saf System (MGS) and consisted of a sta verlapped portion used to connect the arrier at 63.2 mph re within the reco $8 \mathrm{~km} / \mathrm{h}$ ) and 24.0 d ded occupant risk 24.6 degrees. For nd the vehicle dece <br> nsition design det | are (MASH) Test Level 3 concrete barrier (PCB) syst that overlapped a series of systems, uniquely-desig <br> and 25.3 degrees. The bat ccupant risk limits. In test barrier captured and redire st no. MGSPCB-3, a 5,17 e system was impacted in were within the recommen <br> represents the first MASH |
|  |  | 18. Availability Statement <br> No restrictions. Document available from: National Technical Information Services, Springfield, Virginia 22161 |  |
| 19. Security Class (this report) <br> Unclassified | 20. Security Class (this page) Unclassified | 21. No. of Pages 282 | 22. Price |

## DISCLAIMER STATEMENT

This report was completed with funding from the Federal Highway Administration, U.S. Department of Transportation, Midwest States Smart Work-Zone Deployment Initiative (SWZDI), and the Nebraska Department of Roads. The contents of this report reflect the views and opinions of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Nebraska Department of Roads, SWZDI, the Federal Highway Administration, or the U.S. Department of Transportation. This report does not constitute a standard, specification, regulation, product endorsement, or an endorsement of manufacturers.

## UNCERTAINTY OF MEASUREMENT STATEMENT

The Midwest Roadside Safety Facility (MwRSF) has determined the uncertainty of measurements for several parameters involved in standard full-scale crash testing and non-standard testing of roadside safety features. Information regarding the uncertainty of measurements for critical parameters is available upon request by the sponsor and the Federal Highway Administration.


#### Abstract

ABOUT SWZDI Iowa, Kansas, Missouri, and Nebraska created the Midwest States Smart Work-Zone Deployment Initiative in 1999, and Wisconsin joined in 2001. Through this pooled-fund study, researchers investigate better ways of controlling traffic through work zones. Their goal is to improve the safety and efficiency of traffic operations and highway work. The project is now administered by Iowa State University's Institute for Transportation.


## INDEPENDENT APPROVING AUTHORITY

The Independent Approving Authority (IAA) for the data contained herein was Ms. Karla Lechtenberg, Research Associate Engineer.

## ACKNOWLEDGEMENTS

The authors wish to acknowledge several sources that made a contribution to this project: (1) the Nebraska Department of Roads for sponsoring this project and (2) MwRSF personnel for constructing the barriers and conducting the crash tests.

This research was also conducted under the Smart Work-Zone Deployment Initiative (SWZDI) and Federal Highway Administration (FHWA) Pooled Fund Study TPF-5(193), involving the following state departments of transportation:

- Iowa (lead state)
- Kansas
- Missouri
- Nebraska
- Wisconsin

The authors would like to thank the FHWA, the Iowa Department of Transportation (DOT), and the other SWZDI pooled fund state partners for their financial support and technical assistance.

Acknowledgement is also given to the following individuals who made a contribution to the completion of this research project.

## Midwest Roadside Safety Facility

J.C. Holloway, M.S.C.E., E.I.T., Test Site Manager
K.A. Lechtenberg, M.S.M.E., E.I.T., Research Associate Engineer
S.K. Rosenbaugh, M.S.C.E., E.I.T., Research Associate Engineer
J.D. Schmidt, Ph.D., P.E., Research Assistant Professor
C.S. Stolle, Ph.D., Research Assistant Professor
A.T. Russell, B.S.B.A., Shop Manager
S.M. Tighe, Laboratory Mechanic
D.S. Charroin, Laboratory Mechanic
M.A. Rasmussen, Laboratory Mechanic
E.W. Krier, Laboratory Mechanic

Undergraduate and Graduate Research Assistants

## Nebraska Department of Roads

Phil TenHulzen, P.E., Design Standards Engineer

Jim Knott, P.E., State Roadway Design Engineer
Jodi Gibson, Research Coordinator
Anna Neben, Quality Management Project Coordinator

## Federal Highway Administration

John Perry, P.E., Nebraska Division Office
Danny Briggs, Nebraska Division Office

## Iowa State University

Keith Knapp, Iowa LTAP Director, Smart Work-Zone Deployment Initiative (SWZDI)

## EXECUTIVE SUMMARY

Often, road construction causes the need to create a work zone. In these scenarios, portable concrete barriers (PCBs) are typically installed to shield workers and equipment from errant vehicles as well as prevent motorists from striking other roadside hazards. For an existing W-beam guardrail system installed adjacent to the roadway and near the work zone, guardrail sections are removed in order to place the PCB system. The focus of this research study was to evaluate a previously-developed transition between W-beam guardrail and PCB to Manual for Assessing Safety Hardware (MASH) Test Level 3 (TL-3). A previous phase of this research program included the development of a guardrail and free-standing PCB transition using extensive LSDYNA simulation as well as refinement of potential concepts. Concept refinement led to a transition system comprised of a tangent, nested- Midwest Guardrail System (MGS) that overlapped an adjacent, flared PCB system. LS-DYNA simulation was also used to identify critical impact points for use in full-scale vehicle crash testing.

Three full-scale vehicle crash tests were conducted according to the MASH TL-3 safety performance criteria on a MGS to PCB transition. These tests evaluated structural integrity, vehicle snag, vehicle instability, and vehicle capture. The transition system that was used in test nos. MGSPCB-1 through MGSPCB-3 consisted of a standard MGS that overlapped a series of F-shape, PCB segments that approached the MGS at a $15 \mathrm{H}: 1 \mathrm{~V}$ flare. In the overlapped portion of the barrier systems, uniquely-designed blockout holders and a specialized W -beam end shoe mounting bracket were used to connect the systems.

Test no. MGSPCB-1, which followed MASH test designation no. 3-21 criteria, involved a 5,079-lb (2,304-kg) pickup truck impacting the barrier at $63.2 \mathrm{mph}(101.8 \mathrm{~km} / \mathrm{h})$ and 25.3 degrees. The barrier captured and redirected the 2270P vehicle, and the vehicle decelerations were within the recommended occupant risk limits. Test no. MGSPCB-2, which followed MASH test designation no. 3-20 criteria, involved a $2,601-\mathrm{lb}(1,180-\mathrm{kg})$ car impacting the barrier at 65.1 mph ( $104.8 \mathrm{~km} / \mathrm{h}$ ) and 24.0 degrees. The barrier captured and redirected the 1100 C vehicle, and the vehicle decelerations were within the recommended occupant risk limits. Test no. MGSPCB-3 was another MASH test designation no. 3-21 test, with a reverse-direction impact. A 5,177-lb (2,348kg ) pickup truck impacted the barrier at $63.1 \mathrm{mph}(101.5 \mathrm{~km} / \mathrm{h})$ and 24.6 degrees. The barrier captured and redirected the 2270 P vehicle, and the vehicle decelerations were within the recommended occupant risk limits.

Based on the results of these successful crash tests, it is believed that the transition design detailed herein represents the first MASH TL-3 crashworthy transition between the MGS and PCBs.

## TABLE OF CONTENTS

TECHNICAL REPORT DOCUMENTATION PAGE ..... i
DISCLAIMER STATEMENT ..... ii
UNCERTAINTY OF MEASUREMENT STATEMENT ..... ii
ABOUT SWZDI ..... ii
INDEPENDENT APPROVING AUTHORITY ..... ii
ACKNOWLEDGEMENTS ..... iii
EXECUTIVE SUMMARY ..... v
TABLE OF CONTENTS ..... vi
LIST OF FIGURES ..... ix
LIST OF TABLES ..... xv
ACRONYMS, ABBREVIATIONS, AND SYMBOLS ..... xvi
1 INTRODUCTION ..... 1
1.1 Background ..... 1
1.2 Objective/Scope ..... 1
2 REFINEMENT OF TRANSITION CONCEPT ..... 2
2.1 Phase I Preferred Transition Concept with Considerations ..... 2
2.2 PCB Foundation ..... 4
2.3 Guardrail to PCB Connection Hardware ..... 4
2.3.1 W-Beam End Shoe to PCB Connection Hardware ..... 4
2.3.2 W-Beam Guardrail to PCB Connection Hardware ..... 5
3 TEST REQUIREMENTS AND EVALUATION CRITERIA ..... 10
3.1 Test Requirements ..... 10
3.2 Evaluation Criteria ..... 11
3.3 Soil Strength Requirements ..... 12
4 TEST CONDITIONS ..... 13
4.1 Test Facility ..... 13
4.2 Vehicle Tow and Guidance System ..... 13
4.3 Test Vehicles ..... 13
4.4 Simulated Occupant ..... 14
4.5 Data Acquisition Systems ..... 24
4.5.1 Accelerometers ..... 24
4.5.2 Rate Transducers ..... 24
4.5.3 Retroreflective Optic Speed Trap ..... 24
4.5.4 Load Cells and String Potentiometers ..... 24
4.5.5 Digital Photography ..... 25
5 DESIGN DETAILS, TEST NO. MGSPCB-1 ..... 29
6 FULL-SCALE CRASH TEST NO. MGSPCB-1 ..... 71
6.1 Static Soil Test ..... 71
6.2 Weather Conditions ..... 71
6.3 Test Description ..... 71
6.4 Barrier Damage ..... 73
6.5 Vehicle Damage ..... 74
6.6 Occupant Risk ..... 75
6.7 Load Cells and String Potentiometers ..... 76
6.8 Discussion 76
7 DESIGN DETAILS, TEST NO. MGSPCB-2 ..... 92
8 FULL-SCALE CRASH TEST NO. MGSPCB-2 ..... 97
8.1 Static Soil Test ..... 97
8.2 Weather Conditions ..... 97
8.3 Test Description ..... 97
8.4 Barrier Damage ..... 99
8.5 Vehicle Damage ..... 100
8.6 Occupant Risk ..... 101
8.7 Discussion 101
9 DESIGN DETAILS, TEST NO. MGSPCB-3 ..... 118
10 FULL-SCALE CRASH TEST NO. MGSPCB-3 ..... 122
10.1 Static Soil Test ..... 122
10.2 Weather Conditions ..... 122
10.3 Test Description ..... 122
10.4 Barrier Damage ..... 124
10.5 Vehicle Damage ..... 126
10.6 Occupant Risk ..... 127
10.7 Discussion ..... 127
11 SUMMARY AND CONCLUSIONS ..... 143
12 RECOMMENDATIONS ..... 145
12.1 Minimum Installation Requirements ..... 145
12.2 Blockout Placement and Tolerances ..... 145
12.3 Grading and Surfacing ..... 146
12.4 Repair Recommendations ..... 147
12.5 Integration with Other Barrier Systems ..... 147
13 REFERENCES ..... 153
14 APPENDICES ..... 155
Appendix A. Material Specifications ..... 156
Appendix B. Vehicle Center of Gravity Determination ..... 198
Appendix C. Static Soil Tests ..... 202
Appendix D. Vehicle Deformation Records ..... 207
Appendix E. Accelerometer and Rate Transducer Data Plots, Test No. MGSPCB-1 . ..... 226
Appendix F. Load Cell and String Potentiometer Data, Test No. MGSPCB-1 ..... 245
Appendix G. Accelerometer and Rate Transducer Data Plots, Test No. MGSPCB-2. ..... 248
Appendix H. Accelerometer and Rate Transducer Data Plots, Test No. MGSPCB-3 ..... 265

## LIST OF FIGURES

Figure 1. Phase I Nested MGS to Flared PCB Transition Concept ..... 3
Figure 2. W-beam End Shoe Connection for MGS to PCB Transition ..... 5
Figure 3. Double-Taper Blockout Attachment ..... 7
Figure 4. Steel Tube and Base Plate Blockout Attachment ..... 8
Figure 5. Bent Plate Blockout Attachment ..... 9
Figure 6. Test Vehicle, Test No. MGSPCB-1 ..... 15
Figure 7. Vehicle Dimensions, Test No. MGSPCB-1 ..... 16
Figure 8. Test Vehicle, Test No. MGSPCB-2 ..... 17
Figure 9. Vehicle Dimensions, Test No. MGSPCB-2 ..... 18
Figure 10. Test Vehicle, Test No. MGSPCB-3 ..... 19
Figure 11. Vehicle Dimensions, Test No. MGSPCB-3 ..... 20
Figure 12. Target Geometry, Test No. MGSPCB-1 ..... 21
Figure 13. Target Geometry, Test No. MGSPCB-2 ..... 22
Figure 14. Target Geometry, Test No. MGSPCB-3 ..... 23
Figure 15. Location of Load Cells and String Potentiometers ..... 25
Figure 16. Camera Locations, Speeds, and Lens Settings, Test No. MGSPCB-1 ..... 26
Figure 17. Camera Locations, Speeds, and Lens Settings, Test No. MGSPCB-2 ..... 27
Figure 18. Camera Locations, Speeds, and Lens Settings, Test No. MGSPCB-3 ..... 28
Figure 19. Test Installation Layout, Test No. MGSPCB-1 ..... 31
Figure 20. Soil Pit Detail, Test No. MGSPCB-1 ..... 32
Figure 21. Transition Detail, Test No. MGSPCB-1 ..... 33
Figure 22. Description of View, Test No. MGSPCB-1 ..... 34
Figure 23. End Section Detail, Test No. MGSPCB-1 ..... 35
Figure 24. Splice and Post Nos. 3-12 Detail, Test No. MGSPCB-1 ..... 36
Figure 25. Splice and Post Nos. 13-18 Detail, Test No. MGSPCB-1 ..... 37
Figure 26. Transition Connection Detail, Test No. MGSPCB-1 ..... 38
Figure 27. BCT Anchor Detail, Test No. MGSPCB-1 ..... 39
Figure 28. Connector Plate Detail, Test No. MGSPCB-1 ..... 40
Figure 29. Connector Plate Weld Detail, Test No. MGSPCB-1 ..... 41
Figure 30. BCT Anchor Cable and Load Cell Detail, Test No. MGSPCB-1 ..... 42
Figure 31. Modified BCT Anchor Cable, Test No. MGSPCB-1 ..... 43
Figure 32. Shackle and Eye Nut Detail, Test No. MGSPCB-1 ..... 44
Figure 33. Ground Strut Detail, Test No. MGSPCB-1 ..... 45
Figure 34. Blockout Mounting Plate, Test No. MGSPCB-1 ..... 46
Figure 35. Blockout Mounting Plate, Flat Pattern, Test No. MGSPCB-1 ..... 47
Figure 36. Blockout Mounting Plate Detail, Test No. MGSPCB-1 ..... 48
Figure 37. Blockout Mounting Plate Detail, Test No. MGSPCB-1 ..... 49
Figure 38. Connector Plate Face Plate, Test No. MGSPCB-1 ..... 50
Figure 39. Connector Plate Vertical Gussets, Test No. MGSPCB-1 ..... 51
Figure 40. Connector Plate Horizontal Gussets, Test No. MGSPCB-1 ..... 52
Figure 41. W-Beam Section Detail, Test No. MGSPCB-1 ..... 53
Figure 42. Transition Blockouts, Test No. MGSPCB-1 ..... 54
Figure 43. Post nos. 3-18 Detail, Test No. MGSPCB-1 ..... 55
Figure 44. BCT Timber Post and Foundation Tube, Test No. MGSPCB-1 ..... 56
Figure 45. BCT Post Components and Anchor Brackets, Test No. MGSPCB-1 ..... 57
Figure 46. Portable Concrete Barrier, Test No. MGSPCB-1 ..... 58
Figure 47. Portable Concrete Barrier Profile Detail, Test No. MGSPCB-1 ..... 59
Figure 48. Bill of Bars - Portable Concrete Barriers, Test No. MGSPCB-1 ..... 60
Figure 49. Connection Pin Detail, Test No. MGSPCB-1 ..... 61
Figure 50. Guardrail Bolts and Washers, Test No. MGSPCB-1 ..... 62
Figure 51. Hex and Power Wedge Bolts, Test No. MGSPCB-1 ..... 63
Figure 52. Bill of Materials, Test No. MGSPCB-1 ..... 64
Figure 53. Bill of Materials Continued, Test No. MGSPCB-1 ..... 65
Figure 54. Bill of Materials Continued, Test No. MGSPCB-1 ..... 66
Figure 55. Test Installation, Test No. MGSPCB-1 ..... 67
Figure 56. Test Installation, Test No. MGSPCB-1 ..... 68
Figure 57. Test Installation, Test No. MGSPCB-1 ..... 69
Figure 58. Test Installation, Test No. MGSPCB-1 ..... 70
Figure 59. Summary of Test Results and Sequential Photographs, Test No. MGSPCB-1 ..... 77
Figure 60. Additional Sequential Photographs, Test No. MGSPCB-1 ..... 78
Figure 61. Additional Sequential Photographs, Test No. MGSPCB-1 ..... 79
Figure 62. Documentary Photographs, Test No. MGSPCB-1 ..... 80
Figure 63. Impact Location, Test No. MGSPCB-1 ..... 81
Figure 64. Vehicle Final Position, Test No. MGSPCB-1 ..... 82
Figure 65. System Damage, Test No. MGSPCB-1 ..... 83
Figure 66. System Damage Between Post Nos. 12 and 15, Test No. MGSPCB-1 ..... 84
Figure 67. System Damage Between Post Nos. 14 and 18, Test No. MGSPCB-1 ..... 85
Figure 68. Post Nos. 16 and 17 Damage, Test No. MGSPCB-1 ..... 86
Figure 69. Transition Damage, Test No. MGSPCB-1 ..... 87
Figure 70. Damage at Non-Post Locations Nos. 30 through 23, Test No. MGSPCB-1 ..... 88
Figure 71. Vehicle Damage, Test No. MGSPCB-1 ..... 89
Figure 72. Windshield Damage and Occupant Compartment Deformation, Test No. MGSPCB-1 ..... 90
Figure 73. Undercarriage Damage, Test No. MGSPCB-1 ..... 91
Figure 74. Test Installation Layout, Test No. MGSPCB-2 ..... 93
Figure 75. Test Installation, Test No. MGSPCB-2 ..... 94
Figure 76. Test Installation, Test No. MGSPCB-2 ..... 95
Figure 77. Test Installation, Test No. MGSPCB-2 ..... 96
Figure 78. Summary of Test Results and Sequential Photographs, Test No. MGSPCB-2 ..... 103
Figure 79. Additional Sequential Photographs, Test No. MGSPCB-2 ..... 104
Figure 80. Additional Sequential Photographs, Test No. MGSPCB-2 ..... 105
Figure 81. Documentary Photographs, Test No. MGSPCB-2 ..... 106
Figure 82. Documentary Photographs, Test No. MGSPCB-2 ..... 107
Figure 83. Impact Location, Test No. MGSPCB-2 ..... 108
Figure 84. Vehicle Final Position, Test No. MGSPCB-2 ..... 109
Figure 85. System Damage, Test No. MGSPCB-2 ..... 110
Figure 86. System Damage Between the End Shoe and Post No. 18, Test No. MGSPCB-2 ..... 111
Figure 87. System Damage at the Transition, Test No. MGSPCB-2 ..... 112
Figure 88. System Damage at the Transition, Test No. MGSPCB-2 ..... 113
Figure 89. System Damage at the Transition, Test No. MGSPCB-2 ..... 114
Figure 90. Vehicle Damage, Test No. MGSPCB-2 ..... 115
Figure 91. Vehicle's Windshield Damage, Test No. MGSPCB-2 ..... 116
Figure 92. Undercarriage Damage, Test No. MGSPCB-2 ..... 117
Figure 93. Test Installation Layout, Test No. MGSPCB-3 ..... 119
Figure 94. Test Installation, Test No. MGSPCB-3 ..... 120
Figure 95. Test Installation, Test No. MGSPCB-3 ..... 121
Figure 96. Summary of Test Results and Sequential Photographs, Test No. MGSPCB-3 ..... 129
Figure 97. Additional Sequential Photographs, Test No. MGSPCB-3 ..... 130
Figure 98. Additional Sequential Photographs, Test No. MGSPCB-3 ..... 131
Figure 99. Documentary Photographs, Test No. MGSPCB-3 ..... 132
Figure 100. Documentary Photographs, Test No. MGSPCB-3 ..... 133
Figure 101. Impact Location, Test No. MGSPCB-3 ..... 134
Figure 102. Vehicle Final Position, Test No. MGSPCB-3 ..... 135
Figure 103. System Damage, Test No. MGSPCB-3 ..... 136
Figure 104. System Damage Between End Shoe and Concrete Barrier No. 7, Test No. MGSPCB-3 ..... 137
Figure 105. Backside Concrete Barrier Damage Between Concrete Barrier Nos. 7 and 8, Test No. MGSPCB-3 ..... 138
Figure 106. Rail and Blockout Damage Between End Shoe and Blockout C3, Test No. MGSPCB-3 ..... 139
Figure 107. Vehicle Damage, Test No. MGSPCB-3 ..... 140
Figure 108. Windshield Damage and Occupant Compartment Deformation, Test No. MGSPCB-3 ..... 141
Figure 109. Undercarriage Damage, Test No. MGSPCB-3 ..... 142
Figure 110. Schematic for Transitioning G4(1S) to MGS Prior to Guardrail to PCB Transition, Omitted Post Option ..... 150
Figure 111. Schematic for Transitioning between G4(1S) and MGS Prior to Guardrail to PCB Transition, Half-Post Spacing in MGS Option ..... 151
Figure 112. Schematic for Transitioning between G4(1S) and MGS Prior to Guardrail to PCB Transition, Half-Post Spacing in G4(1S) Option ..... 152
Figure A-1. Bill of Materials, Test Nos. MGSPCB-1 through MGSPCB-3 ..... 157
Figure A-2. W-Beam End Shoe Section, Test Nos. MGSPCB-1 through MGSPCB-3 ..... 158
Figure A-3. W-Beam MGS End Section, Test Nos. MGSPCB-1 through MGSPCB-3 ..... 159
Figure A-4. W-Beam MGS Section, Test Nos. MGSPCB-1 through MGSPCB-3 ..... 160
Figure A-5. Steel Posts, Test Nos. MGSPCB-1 through MGSPCB-3 ..... 161
Figure A-6. Steel Posts, Test Nos. MGSPCB-1 through MGSPCB-3 ..... 162
Figure A-7. Steel Posts, Test Nos. MGSPCB-1 through MGSPCB-3 ..... 163
Figure A-8. Steel Posts, Test Nos. MGSPCB-1 through MGSPCB-3 ..... 164
Figure A-9. Steel Posts, Test Nos. MGSPCB-1 through MGSPCB-3 ..... 165
Figure A-10. Steel Posts, Test Nos. MGSPCB-1 through MGSPCB-3 ..... 166
Figure A-11. Steel Post, Test Nos. MGSPCB-2 ..... 167
Figure A-12. Timber Blockouts, Test Nos. MGSPCB-1 through MGSPCB-3 ..... 168
Figure A-13. Timber Blockouts, Test Nos. MGSPCB-1 through MGSPCB-3 ..... 169
Figure A-14. $5 / 8-\mathrm{in}$. ( $16-\mathrm{mm}$ ) x $10-\mathrm{in}$. ( $254-\mathrm{mm}$ ) Guardrail Bolts, Test Nos. MGSPCB-1 through MGSPCB-3 ..... 170
Figure A-15. $5 / 8$-in. ( $16-\mathrm{mm}$ ) x 14-in. ( $356-\mathrm{mm}$ ) Post Bolts, Test Nos. MGSPCB-1 through MGSPCB-3 ..... 171
Figure A-16. $5 / 8-\mathrm{in}$. ( $16-\mathrm{mm}$ ) x 14-in. ( $356-\mathrm{mm}$ ) Guardrail Bolts, Test Nos. MGSPCB-1 through MGSPCB-3 ..... 172
Figure A-17. $5 / 8$-in. (16-mm) x 14-in. (356-mm) Guardrail Bolts, Test Nos. MGSPCB-1 through MGSPCB-3. ..... 173
Figure A-18. $5 / 8-\mathrm{in} .(16-\mathrm{mm}) \times 22-\mathrm{in}$. $(559-\mathrm{mm})$ Post Bolts, Test Nos. MGSPCB-1 through MGSPCB-3 ..... 174
Figure A-19. 18-in. (457-mm) Post Bolts, Test Nos. MGSPCB-1 through MGSPCB-3 ..... 175
Figure A-20. $5 / 8-\mathrm{in}$. ( $16-\mathrm{mm}$ ) x $10-\mathrm{in}$. ( $254-\mathrm{mm}$ ) Post Bolts, Test Nos. MGSPCB-1 through MGSPCB-3 ..... 176
Figure A-21. $5 / 8$-in. $(16-\mathrm{mm}) \times 10$-in. $(254-\mathrm{mm})$ Post Bolts, Test Nos. MGSPCB-1 through MGSPCB-3 ..... 177
Figure A-22. BCT Timber Posts, Test Nos. MGSPCB-1 through MGSPCB-3 ..... 178
Figure A-23. $5 / 8$-in. ( $16-\mathrm{mm}$ ) x 14-in. (356-mm) Guardrail Bolts, Test No. MGSPCB-3 ..... 179
Figure A-24. $5 / 8-\mathrm{in}$. ( $16-\mathrm{mm}$ ) x 14-in. ( $356-\mathrm{mm}$ ) Guardrail Bolts, Test No. MGSPCB-3 ..... 180
Figure A-25. Foundation Tubes, Test Nos. MGSPCB-1 through MGSPCB-3 ..... 181
Figure A-26. Ground Strut Assembly, Test Nos. MGSPCB-1 through MGSPCB-3 ..... 182
Figure A-27. BCT Post Sleeves, Test Nos. MGSPCB-1 through MGSPCB-3 ..... 183
Figure A-28. Anchor Bearing Plate, Test Nos. MGSPCB-1 through MGSPCB-3 ..... 184
Figure A-29. Anchor Bracket Assembly, Test Nos. MGSPCB-1 through MGSPCB-3 ..... 185
Figure A-30. Blockout Mounting Plates, Test Nos. MGSPCB-1 through MGSPCB-3 ..... 186
Figure A-31. Timber Blockouts, Test Nos. MGSPCB-1 through MGSPCB-3 ..... 187
Figure A-32. Timber Blockouts, Test Nos. MGSPCB-1 through MGSPCB-3 ..... 188
Figure A-33. Portable Concrete Barriers, Test Nos. MGSPCB-1 through MGSPCB-3 ..... 189
Figure A-34. $3 / 4-\mathrm{in}$. (19-mm) Dia., 36-in. (914-mm) Long Anchor Loop Bar, Test Nos. MGSPCB-1 through MGSPCB-3 ..... 190
Figure A-35. $1 / 2-\mathrm{in}$. (13-mm) Dia., 72 -in. ( $1,829-\mathrm{mm}$ ) Long Form Bar and $1 / 2-\mathrm{in}$. ( $13-\mathrm{mm}$ ) Dia., 146 -in. (3,708-mm) Long Longitudinal Bar, Test Nos. MGSPCB-1 through MGSPCB-3 ..... 191
Figure A-36. $5 / 8-\mathrm{in}$. ( $16-\mathrm{mm}$ ) Dia., $146-\mathrm{in} .(3,708-\mathrm{mm})$ Long Longitudinal Bar, Test Nos. MGSPCB-1 through MGSPCB-3 ..... 192
Figure A-37. Epoxy Coated Reinforcing Steel, Test Nos. MGSPCB-1 through MGSPCB-3 ..... 193
Figure A-38. $3 / 4-\mathrm{in}$. (19-mm) Dia., 102-in. (2,591-mm), 91-in. (2,311-mm), and 101-in. ( $2,565-\mathrm{mm}$ ) Long Connection Loop Bar, Test Nos. MGSPCB-1 through MGSPCB-3 ..... 194
Figure A-39. $3 / 4-\mathrm{in}$. (19-mm) Dia., 102-in. (2,591-mm), $91-\mathrm{in} .(2,311-\mathrm{mm})$, and $101-\mathrm{in}$. (2,565-mm) Long Connection Loop Bar, Test Nos. MGSPCB-1 through MGSPCB-3 ..... 195
Figure A-40. 114-in. (32-mm) Dia., 28-in. (711-mm) Long Connector Pins, Test Nos. MGSPCB-1 through MGSPCB-3 ..... 196
Figure A-41. 114-in. (32-mm) Dia., 28-in. (711-mm) Long Connector Pins, Test Nos. MGSPCB-1 through MGSPCB-3 ..... 197
Figure B-1. Vehicle Mass Distribution, Test No. MGSPCB-1 ..... 199
Figure B-2. Vehicle Mass Distribution, Test No. MGSPCB-2 ..... 200
Figure B-3. Vehicle Mass Distribution, Test No. MGSPCB-3 ..... 201
Figure C-1. Soil Strength, Initial Calibration Tests ..... 203
Figure C-2. Static Soil Test, Test No. MGSPCB-1 ..... 204
Figure C-3. Static Soil Test, Test No. MGSPCB-2 ..... 205
Figure C-4. Static Soil Test, Test No. MGSPCB-3 ..... 206
Figure D-1. Floor Pan Deformation Data - Set 1, Test No. MGSPCB-1 ..... 208
Figure D-2. Floor Pan Deformation Data - Set 2, Test No. MGSPCB-1 ..... 209
Figure D-3. Occupant Compartment Deformation Data - Set 1, Test No. MGSPCB-1 ..... 210
Figure D-4. Occupant Compartment Deformation Data - Set 2, Test No. MGSPCB-1 ..... 211
Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. MGSPCB-1 ..... 212
Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. MGSPCB-1 ..... 213
Figure D-7. Floor Pan Deformation Data - Set 1, Test No. MGSPCB-2 ..... 214
Figure D-8. Floor Pan Deformation Data - Set 2, Test No. MGSPCB-2 ..... 215
Figure D-9. Occupant Compartment Deformation Data - Set 1, Test No. MGSPCB-2 ..... 216
Figure D-10. Occupant Compartment Deformation Data - Set 2, Test No. MGSPCB-2 ..... 217
Figure D-11. Exterior Vehicle Crush (NASS) - Front, Test No. MGSPCB-2. ..... 218
Figure D-12. Exterior Vehicle Crush (NASS) - Side, Test No. MGSPCB-2 ..... 219
Figure D-13. Floor Pan Deformation Data - Set 1, Test No. MGSPCB-3 ..... 220
Figure D-14. Floor Pan Deformation Data - Set 2, Test No. MGSPCB-3 ..... 221
Figure D-15. Occupant Compartment Deformation Data - Set 1, Test No. MGSPCB-3 ..... 222
Figure D-16. Occupant Compartment Deformation Data - Set 2, Test No. MGSPCB-3 ..... 223
Figure D-17. Exterior Vehicle Crush (NASS) - Front, Test No. MGSPCB-3 ..... 224
Figure D-18. Exterior Vehicle Crush (NASS) - Side, Test No. MGSPCB-3 ..... 225
Figure E-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. MGSPCB-1 ..... 227
Figure E-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. MGSPCB-1 ..... 228
Figure E-3. Longitudinal Occupant Displacement (SLICE-1), Test No. MGSPCB-1 ..... 229
Figure E-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. MGSPCB-1 ..... 230
Figure E-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. MGSPCB-1 ..... 231
Figure E-6. Lateral Occupant Displacement (SLICE-1), Test No. MGSPCB-1 ..... 232
Figure E-7. Vehicle Angular Displacements (SLICE-1), Test No. MGSPCB-1 ..... 233
Figure E-8. Acceleration Severity Index (SLICE-1), Test No. MGSPCB-1 ..... 234
Figure E-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. MGSPCB-1 ..... 235
Figure E-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. MGSPCB-1 ..... 236
Figure E-11. Longitudinal Occupant Displacement (SLICE-2), Test No. MGSPCB-1 ..... 237
Figure E-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. MGSPCB-1 ..... 238
Figure E-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. MGSPCB-1 ..... 239
Figure E-14. Lateral Occupant Displacement (SLICE-2), Test No. MGSPCB-1 ..... 240
Figure E-15. Vehicle Angular Displacements (SLICE-2), Test No. MGSPCB-1 ..... 241
Figure E-16. Acceleration Severity Index (SLICE-2), Test No. MGSPCB-1 ..... 242
Figure E-17. ACM Longitudinal Acceleration Data Comparison for Secondary Impact, Test No. MGSPCB-1 ..... 243
Figure E-18. ACM Longitudinal Change in Velocity Data Comparison for Secondary Impact, Test No. MGSPCB-1 ..... 244
Figure F-1. Load Cell Data, Test No. MGSPCB-1 ..... 246
Figure F-2. String Potentiometer Data, Test No. MGSPCB-1 ..... 247
Figure G-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. MGSPCB-2 ..... 249
Figure G-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. MGSPCB-2. ..... 250
Figure G-3. Longitudinal Occupant Displacement (SLICE-1), Test No. MGSPCB-2 ..... 251
Figure G-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. MGSPCB-2 ..... 252
Figure G-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. MGSPCB-2 ..... 253
Figure G-6. Lateral Occupant Displacement (SLICE-1), Test No. MGSPCB-2. ..... 254
Figure G-7. Vehicle Angular Displacements (SLICE-1), Test No. MGSPCB-2 ..... 255
Figure G-8. Acceleration Severity Index (SLICE-1), Test No. MGSPCB-2 ..... 256
Figure G-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. MGSPCB-2 ..... 257
Figure G-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. MGSPCB-2 ..... 258
Figure G-11. Longitudinal Occupant Displacement (SLICE-2), Test No. MGSPCB-2 ..... 259
Figure G-12. $10-\mathrm{ms}$ Average Lateral Deceleration (SLICE-2), Test No. MGSPCB-2 ..... 260
Figure G-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. MGSPCB-2 ..... 261
Figure G-14. Lateral Occupant Displacement (SLICE-2), Test No. MGSPCB-2. ..... 262
Figure G-15. Vehicle Angular Displacements (SLICE-2), Test No. MGSPCB-2 ..... 263
Figure G-16. Acceleration Severity Index (SLICE-2), Test No. MGSPCB-2 ..... 264
Figure H-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. MGSPCB-3 ..... 266
Figure H-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. MGSPCB-3. ..... 267
Figure H-3. Longitudinal Occupant Displacement (SLICE-1), Test No. MGSPCB-3 ..... 268
Figure H-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. MGSPCB-3 ..... 269
Figure H-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. MGSPCB-3 ..... 270
Figure H-6. Lateral Occupant Displacement (SLICE-1), Test No. MGSPCB-3. ..... 271
Figure H-7. Vehicle Angular Displacements (SLICE-1), Test No. MGSPCB-3 ..... 272
Figure H-8. Acceleration Severity Index (SLICE-1), Test No. MGSPCB-3 ..... 273
Figure H-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. MGSPCB-3 ..... 274
Figure H-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. MGSPCB-3 ..... 275
Figure H-11. Longitudinal Occupant Displacement (SLICE-2), Test No. MGSPCB-3 ..... 276
Figure H-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. MGSPCB-3 ..... 277
Figure H-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. MGSPCB-3 ..... 278
Figure H-14. Lateral Occupant Displacement (SLICE-2), Test No. MGSPCB-3 ..... 279
Figure H-15. Vehicle Angular Displacements (SLICE-2), Test No. MGSPCB-3 ..... 280
Figure H-16. Acceleration Severity Index (SLICE-2), Test No. MGSPCB-3 ..... 281

## LIST OF TABLES

Table 1. MASH TL-3 Crash Test Conditions for Longitudinal Barriers - Transitions ..... 10
Table 2. MASH Evaluation Criteria for Longitudinal Barrier ..... 12
Table 3. Weather Conditions, Test No. MGSPCB-1 ..... 71
Table 4. Sequential Description of Impact Events, Test No. MGSPCB-1 ..... 72
Table 5. Maximum Occupant Compartment Deformations by Location, Test No. MGSPCB-1 ..... 75
Table 6. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. MGSPCB-1 ..... 76
Table 7. Weather Conditions, Test No. MGSPCB-2 ..... 97
Table 8. Sequential Description of Impact Events, Test No. MGSPCB-2 ..... 98
Table 9. Maximum Occupant Compartment Deformations by Location, Test No. MGSPCB-2 ..... 101
Table 10. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. MGSPCB-2 ..... 102
Table 11. Weather Conditions, Test No. MGSPCB-3 ..... 122
Table 12. Sequential Description of Impact Events, Test No. MGSPCB-3 ..... 123
Table 13. Maximum Occupant Compartment Deformations by Location, Test No. MGSPCB-3 ..... 126
Table 14. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. MGSPCB-3 ..... 128
Table 15. Summary of Safety Performance Evaluation Results. ..... 144

## ACRONYMS, ABBREVIATIONS, AND SYMBOLS

| Acronym | Definition |
| :---: | :---: |
| AASHTO | - American Association of State Highway and Transportation Officials |
| ACM | - Airbag Control Module |
| AOS | - AOS Technologies AG |
| ASI | - Acceleration Severity Index |
| ASTM | - American Society for Testing and Materials |
| B.S.B.A. | - Bachelor of Science in Business Administration |
| BCT | - Breakaway Cable Terminal |
| c.g. | - center of gravity |
| CIP | - Critical Impact Point |
| cm | - centimeter |
| cyl | - cylinder |
| deg | - degree |
| dia. | - diameter |
| DOT | - Department of Transportation |
| DTS | - Diversified Technical Systems, Incorporated |
| E.I.T. | - Engineer in Training |
| FHWA | - Federal Highway Administration |
| ft | - foot |
| $\mathrm{ft} / \mathrm{s}$ | - feet per second |
| FWD | - front-wheel drive |
| g's | - g-force, acceleration due to gravity at the Earth's surface |
| GB | - gigabyte |
| h | - hour |
| H | - Horizontal |
| Hz | - Hertz |
| i.e. | - id est (that is) |
| IAA | - Independent Approving Authority |
| in. | - inch |
| IS | - impact severity |
| JVC | - Victor Company of Japan, Limited |
| kg | - kilogram |
| kip-in. | - thousand pounds-force inches |
| kips | - thousand pounds-force |
| kJ | - kilojoules |
| km | - kilometer |
| km/h | - kilometers per hour |
| kN | - kilonewton |
| L | - liter |


| lb | - pound(s) |
| :---: | :---: |
| LED | - light-emitting diode |
| m | - meter |
| $\mathrm{m} / \mathrm{s}$ | - meters per second |
| MASH | - Manual for Assessing Safety Hardware |
| MGS | - Midwest Guardrail System |
| mm | - millimeter |
| mph | - miles per hour |
| M.S.C.E. | - Master of Science in Civil Engineering |
| M.S.M.E. | - Master of Science in Mechanical Engineering |
| $m V$ | - millivolts |
| MwRSF | - Midwest Roadside Safety Facility |
| N | - Newton |
| NA | - not applicable |
| NCHRP | - National Cooperative Highway Research Program |
| NDOR | - Nebraska Department of Roads |
| NHS | - National Highway System |
| no. | - number |
| nos. | - numbers |
| OIV | - occupant impact velocity |
| ORA | - occupant ridedown acceleration |
| PCB | - Portable Concrete Barrier |
| P.E. | - Professional Engineer |
| Ph.D. | - Doctor of Philosophy |
| PHD | - Post-Impact Head Deceleration |
| p.m. | - post meridiem |
| RWD | - rear-wheel drive |
| s | - second |
| SAE | - Society of Automotive Engineers |
| sec | - second |
| SYP | - Southern Yellow Pine |
| THIV | - Theoretical Head Impact Velocity |
| TL | - Test Level |
| U.S. | - United States |
| US | - upstream |
| V | - volts |
| V | - Vertical |
| ${ }^{\circ} \mathrm{F}$ | - degrees Fahrenheit |
| , | - foot |
| " | - inch |
| \% | - percent |


| $>$ | - greater than |
| :--- | :--- |
| $\leq$ | - |
| $\pm$ | less than or equal to |
| $\pm$ | plus or minus |
| $\sigma_{w}$ | - yield strength of W-beam rail |
| $t_{w}$ | - thickness of W-beam rail |
| $D_{b}$ | - bolt diameter |
| $F_{v}$ | $-\quad$ shear force |

## 1 INTRODUCTION

### 1.1 Background

Work zones often require the use of portable concrete barriers (PCBs) within a limited area to provide protection for construction workers. In situations where an existing guardrail is immediately adjacent to the construction hazards that need to be shielded, highway designers must either connect the guardrail to the temporary barrier or replace it with PCB. Although interconnecting the two barrier systems represents the more convenient option, at present no suitable solutions have been made available. While a transition from guardrail to temporary barriers may not need to be nearly as stiff as a conventional approach transitions, it must provide sufficient stiffness and strength to prevent pocketing as well as to shield the end of the concrete barrier to prevent serious wheel snag. In addition, considerations must be made for attachment of the guardrail to the PCBs.

Nebraska Department of Roads (NDOR) and the Smart Work-Zone Deployment Initiative (SWZDI) have previously funded a project to develop a guardrail to PCB transition design capable of meeting the Manual for Assessing Safety Hardware (MASH) [1] Test Level 3 (TL-3) safety requirements. This research effort resulted in the development of a flared PCB to guardrail transition that utilized a tangent, nested Midwest Guardrail System (MGS) that overlapped a series of F-shape, PCB segments installed at a $15 \mathrm{H}: 1 \mathrm{~V}$ flare. Both the MGS and the F-shape PCB had previously been evaluated to MASH TL-3 [2-6]. During that research, computer simulation indicated a high likelihood that the proposed transition would meet MASH TL-3 and determined critical impact points for use in full-scale crash testing. In order to implement the proposed design, the transition details must be fully developed, fabricated, and then subjected to full-scale crash testing according to the MASH TL-3 safety requirements.

The new transition would eliminate the use of unproven connections between guardrail and PCBs. Further, limiting the use of PCBs strictly to the work zone area will also minimize the traffic disruption that these barriers can create to motorists passing in work zones.

### 1.2 Objective/Scope

The objective of this research study was to evaluate the safety performance of the MGS to PCB transition. The system was to be evaluated according to the TL-3 criteria of MASH. Two full-scale crash tests were conducted according to MASH test designation no. 3-21, and one fullscale crash test was conducted according to MASH test designation no. 3-20. Data obtained from these crash tests was analyzed, and the results were utilized to guide the project conclusions and recommendations. Additionally, implementation guidance for the new transition system was provided.

## 2 REFINEMENT OF TRANSITION CONCEPT

The Phase I research effort led to a basic design layout for the transition system based on extensive LS-DYNA simulations. This simulation effort provided general system behavior geometry for the transition design, but other design details were still needed prior to full-scale crash testing. These needs included final design of the connection hardware between the guardrail and the PCB and specification of the foundation system to support the PCBs. This chapter will review the preferred design concept and assumptions identified in Phase I and discuss the development of the connection hardware and foundation specification.

### 2.1 Phase I Preferred Transition Concept with Considerations

The Phase I research effort led to the development of a transition system comprised of a tangent, nested-MGS that overlapped an adjacent, flared PCB system, as shown in Figure 1. This schematic shows the configuration for the MGS to PCB transition based on the initial computer simulation analysis. It was found that:

1. The transition should consist of at least $137.5-\mathrm{ft}$ (41.91-m) long MGS and an eleven segment PCB system installed at a $15 \mathrm{H}: 1 \mathrm{~V}$ flare. A minimum of eight PCBs should be placed downstream from the point where the MGS attaches to the PCBs. The portable barriers are $12.5-\mathrm{ft}(3.81-\mathrm{m})$ long, F-shape PCBs, those previously developed through the Midwest States Pooled Fund Program [6]. The simulation analysis found that these system lengths were appropriate for development of both the guardrail and PCB systems. If shorter system lengths were desired for either barrier type, further full-scale crash testing would be required.
2. The transition required a minimum of three PCB segments extending behind the nested MGS at the $15 \mathrm{H}: 1 \mathrm{~V}$ flare. This finding pertained to guardrail attachment on the upstream end of the fourth PCB segment. Additional length of flared PCBs behind the MGS would not be an issue as the potential for vehicle and barrier interaction with the PCBs is maximized for the minimum overlap condition. Additional flared PCBs behind the MGS is likely given that field installations will not match up exactly with the minimum guardrail-to-PCB overlap.
3. Installation of standard MGS posts and blockouts was not recommended within the first two sections of guardrail upstream from the W-beam end shoe connection as the PCB would interfere with installation of those posts and prevent proper post rotation. Connection between the guardrail and the PCB on the first two PCB segments upstream from the end shoe was accomplished with specially-designed blockout holders, which are discussed later in this chapter.
4. A minimum of five $12-\mathrm{ft} 6-\mathrm{in}$. ( $3,810-\mathrm{mm}$ ) long, nested W -beam sections must be utilized upstream from the end-shoe connection to the PCBs. For the minimum PCB overlap noted above, this corresponds to one complete $12.5-\mathrm{ft}(3.81-\mathrm{m})$ long section of nested rail upstream from the end of the PCBs.

$\omega$
Figure 1. Phase I Nested MGS to Flared PCB Transition Concept

The system tested herein was developed based on these design assumptions. Further recommendations on system implementation are provided following the results of the full-scale crash testing and evaluation of the barrier system.

### 2.2 PCB Foundation

In the past, F-shape PCBs have been recommended for installation on paved road surfaces. This recommendation was made for several reasons. First, a paved surface provides a consistent pad for development of the sliding friction, which provides resistance to barrier motions and develops longitudinal tension in the barrier system. Second, there has been concern that placement of the barriers on a soil foundation may allow the barriers to gouge into the soil when displaced laterally. This gouging could allow the barrier to rotate backward and increases the vehicle climb of the sloped barrier face and vehicle instability. Neither of these behaviors are desirable. For this study, placement of the PCB segments outside of the paved road surface would likely be unavoidable due to the flaring of the PCB behind the guardrail system, which is typically installed in a soil foundation.

In order to alleviate these concerns, a recommended foundation specification was developed for the PCBs located within the transition system evaluated in this research. Thus, a well-compacted, crushed limestone base was required beneath the PCBs. The compacted, crushed limestone material must meet American Association of State Highway and Transportation Officials (AASHTO) Grade B soil specifications and should be installed to a depth of 6 in. (152 $\mathrm{mm})$. The compacted base should be placed underneath all PCB segments installed on a paved road surface, and its dimensions should extend 1 ft ( 305 mm ) in front of the barrier segments, underneath the barrier segments, and a minimum lateral width of $4 \mathrm{ft}(1,219 \mathrm{~mm})$ behind the barrier segments, which is nearly $6 \mathrm{ft}(1,829 \mathrm{~mm})$ wide. The compacted base should have a $10 \mathrm{H}: 1 \mathrm{~V}$ or flatter cross slope.

### 2.3 Guardrail to PCB Connection Hardware

After the first phase of the research project, where the overall layout of the transition system was developed, two attachment details between the guardrail and the PCB segments remained to be designed. These connections included the attachment of the end of the W -beam guardrail to the PCB segments as well as attachment of the W-beam rail and blockouts to the overlapped PCBs. These connections were needed to fasten the overlapped barrier systems to one another while remaining safe, being relatively easy to install, and remaining largely reusable.

### 2.3.1 W-Beam End Shoe to PCB Connection Hardware

The attachment of the end of the W-beam guardrail to the PCBs was designed using a steel mounting bracket, horizontal bolts, and a W-beam end shoe, as shown in Figure 2. The basic design was similar to previously-developed hardware that connects thrie beam approach guardrail transitions to sloped concrete end buttresses or parapets.

For this system, the mounting bracket needed to accommodate both the vertical taper of the barrier and the $15 \mathrm{H}: 1 \mathrm{~V}$ flare of the PCB segments. In addition, the interference caused by steel loop bars at the exterior ends of the PCB required separate attachment of the bracket to the PCB and the W-beam end shoe to the bracket. Thus, the mounting bracket attached to the PCB with
four $1-\mathrm{in}$. ( $25-\mathrm{mm}$ ) diameter through-bolts, while the W-beam end shoe only bolted to the steel mounting bracket using nuts welded to the inside of the bracket for the five $7 / 8$-in. (22-mm) diameter bolts. The bracket was sloped on its backside to allow the W -beam to meet the vertical taper of the PCB and the flare of the PCB segments. The downstream end of the bracket was tapered down to be flush with the PCB to prevent snag during reverse-direction impacts. The designers did weigh options to mount the guardrail end shoe directly to the barrier, but the through-bolt interference noted above and the difficultly of twisting the rail to meet the horizontal and vertical tapers seemed unacceptable. Full details on the connection design can be found in Chapter 5.


Figure 2. W-beam End Shoe Connection for MGS to PCB Transition

### 2.3.2 W-Beam Guardrail to PCB Connection Hardware

Installation of the guardrail on standard support posts in the overlapped barrier region was restricted due to interference with the PCB segments and concerns for limiting rotation of the
support posts. Attachment of the remaining overlapped W-beam guardrail to the PCBs was critical in order to properly support the guardrail element and allow the two barrier systems to move and deflect simultaneously during vehicle impact. Thus, a guardrail blockout holder was developed to allow for attachment of the guardrail to the PCB segments using standard guardrail post bolts.

Several options were investigated for the blockout to PCB attachment. Issues with rebar interference and matching the vertical and horizontal tapers of the system were again a major consideration for the blockout attachment. It was also necessary to consider the attachment of the guardrail bolt from the blockout to the guardrail. Three basic options were developed to address these design considerations. All three options consisted of a steel mounting bracket that attached to the PCB using wedge-bolt mechanical anchors. Four mounting holes were included, but only two anchors were required. The additional holes allow for inadequate installation of the anchor or rebar interference. The brackets were designed to allow for bolting the blockout to both the guardrail and blockout holder using a guardrail bolt. Design variations were developed to provide options for matching the vertical and horizontal angles between the PCB and the guardrail as well as promote ease of fabrication and assembly.

The first concept considered was a double-taper blockout attachment, as shown in Figure 3. The double-taper blockout attachment consisted of welded steel plates that would be cut and assembled to transition between the vertical and horizontal angles of the PCB relative to the guardrail, which inherently made the geometry of the mounting bracket somewhat complex. The benefit of this configuration was that the attachment allowed for variable-depth, rectangular blockouts to be attached without flaring or angling the blockout to match the guardrail or PCB segments. The first blockout adjacent to the end shoe would consist only of the steel mount, while the other mounts would all require variable-depth blockouts. Drawbacks of this concept included its complex welded geometry and the fact that a mirrored design would be required for placement on the left- or right-hand side of the roadway.

The second option was based on a steel tube and base plate configuration, as shown in Figure 4. The steel tube and base plate attachment simplified the design of the mounting bracket by only accounting for the vertical flare of the PCB. The timber blockout was then cut on one face to match the $15 \mathrm{H}: 1 \mathrm{~V}$ flare of the PCB segments as shown below. This selection allowed for a simpler construction using a steel tube that is cut and welded to the face of a mounting plate. This design also allowed use on both sides of the roadway without the need for separate, mirrored components. However, blockouts would need to be cut to match the correct depth and $15 \mathrm{H}: 1 \mathrm{~V}$ angle. In addition, modified timber blocks were required at all four blockout mounts.

A final concept was considered that was similar to the steel tube and base plate concept but simplified to a single bent plate, as shown in Figure 5. The bent plate blockout attachment had all of the same advantages as the steel tube and base plate concept, but it was easier to construct from a single piece of steel and required no welding.

All of the blockout mounting bracket designs were presented to the project sponsor to seek feedback on their preferred design. The sponsor selected the bent plate blockout attachment based on its simpler construction. Full details on the bent plate blockout attachment are located in Chapter 5.


Figure 3. Double-Taper Blockout Attachment


Figure 4. Steel Tube and Base Plate Blockout Attachment


Figure 5. Bent Plate Blockout Attachment

## 3 TEST REQUIREMENTS AND EVALUATION CRITERIA

### 3.1 Test Requirements

Longitudinal barrier transitions, such as transitions between W-beam guardrails and stiffer barriers, must satisfy impact safety standards in order to be declared eligible for federal reimbursement by the Federal Highway Administration (FHWA) for use on the National Highway System (NHS). For new hardware, these safety standards consist of the guidelines and procedures published in MASH [1]. According to TL-3 of MASH, transitions must be subjected to two fullscale vehicle crash tests, as summarized in Table 1.

Table 1. MASH TL-3 Crash Test Conditions for Longitudinal Barriers - Transitions

| Test Article | Test <br> Designation No. | Test Vehicle | Vehicle Weight, lb (kg) | Impact Conditions |  | Evaluation Criteria ${ }^{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{gathered} \text { Speed, } \\ \mathrm{mph} \\ (\mathrm{~km} / \mathrm{h}) \end{gathered}$ | Angle, deg. |  |
| Longitudinal Barrier Transition | 3-20 | 1100C | $\begin{gathered} 2,425 \\ (1,100) \end{gathered}$ | $\begin{gathered} 62 \\ (100) \\ \hline \end{gathered}$ | 25 | A,D,F,H,I |
|  | 3-21 | 2270P | $\begin{gathered} 5,000 \\ (2,270) \end{gathered}$ | $\begin{gathered} 62 \\ (100) \end{gathered}$ | 25 | A,D,F,H,I |

${ }^{1}$ Evaluation criteria explained in Table 2.

A review of the required MASH testing led to the recommendation for three crash tests to fully evaluate the transition. These tests would include MASH test designation nos. 3-20 and 3-21 which are tests to evaluate the transition with the 1100C small car and 2270P pickup truck vehicles. In addition, it was anticipated that a reverse-direction impact of test designation no. 3-21 with the 2270P vehicle would be required to evaluate the transition for installations that require two-way traffic adjacent to the barrier. MASH also requires that transitions be evaluated adjacent to their connection to rigid barriers and in the stiffness transition region. However, it was believed that the three tests noted above would be sufficient to evaluate the transition between two semi-rigid barrier systems where no significant stiffening exists.

Critical Impact Points (CIPs) were determined for each of the three full-scale vehicle crash tests. The Phase I research study contained a simulation effort that identified the CIPs for the 2270P tests in the full-scale crash testing program. Simulations were conducted throughout the length of the MGS to PCB transition in both the oncoming and reverse traffic directions. Critical parameters were monitored, including occupant risk measures, pocketing, vehicle snag, and vehicle stability. Full details of that analysis are provided in the Phase I report [2]. Based on the simulation results, the CIP for test no. 3-21 was determined to be the centerline of the fifth guardrail post upstream from the end-shoe attachment. For the reverse-direction test no. 3-21, the CIP was on the PCB system and $12 \mathrm{ft}-6 \mathrm{in}$. ( 3.81 m ) upstream from the end-shoe attachment.

The Phase I effort did not consider the 1100C vehicle in the simulation of the MGS to PCB transition design. Additionally, the CIP selection charts in MASH are geared toward selection of CIP locations for beam and post systems (i.e., approach guardrail transitions) and were not
relevant. However, engineering analysis and review of previous MASH testing with the 1100C vehicle was used to select a CIP for test no. 3-20. Potential transition CIPs for the 1100 C vehicle should consider maximizing vehicle extension under the guardrail and simultaneous interactions with the PCB in order to promote wedging of the corner of the small car under the guardrail and between the two overlapped barrier systems. This type of behavior would tend to promote increased vehicle decelerations and instabilities as well as increased loading to the guardrail element. Previous testing of an MGS approach guardrail transition with a 4 -in. (102-mm) tall, wedge-shaped curb has demonstrated rail rupture under combined loading when the front corner of the vehicle was wedged vertically between the curb and the guardrail [7]. Review of this approach guardrail transition and other full-scale crash tests indicated that an impact point $933 / 4 \mathrm{in}$. $(2,381 \mathrm{~mm})$ upstream from a splice tended to be critical. As such, the CIP selected for test no. 320 was located $933 / 4 \mathrm{in}$. $(2,381 \mathrm{~mm})$ upstream from the second guardrail splice away from the end shoe connection. The first guardrail splice in the system pertained to the connection of the W-beam end shoe to the nested W-beam guardrail. Location of the CIP at this point in the system would ensure that the vehicle critically loaded a splice while being engaged with both the W-beam guardrail and the PCB. Additionally, this CIP would allow for evaluation of the potential for vehicle interaction with the W-beam end shoe mounting bracket, if any existed.

It should be noted that the test matrix detailed herein represents the researchers' best engineering judgement with respect to the MASH safety requirements and their internal evaluation of critical tests necessary to evaluate the crashworthiness of the barrier system. However, the recent switch to new vehicle types as part of the implementation of the MASH criteria and the lack of experience and knowledge with certain barriers could result in unanticipated barrier performance. Thus, any tests within the evaluation matrix deemed non-critical may eventually need to be evaluated based on additional knowledge gained over time or revisions to the MASH criteria.

### 3.2 Evaluation Criteria

Evaluation criteria for full-scale vehicle crash testing are based on three appraisal areas: (1) structural adequacy; (2) occupant risk; and (3) vehicle trajectory after collision. Criteria for structural adequacy are intended to evaluate the ability of the W-beam guardrail to concrete barrier transition system to contain and redirect impacting vehicles. In addition, controlled lateral deflection of the test article is acceptable. Occupant risk evaluates the degree of hazard to occupants in the impacting vehicle. Post-impact vehicle trajectory is a measure of the potential of the vehicle to result in a secondary collision with other vehicles and/or fixed objects, thereby increasing the risk of injury to the occupants of the impacting vehicle and/or other vehicles. These evaluation criteria are summarized in Table 2 and defined in greater detail in MASH [1]. The fullscale vehicle crash tests documented herein were conducted and reported in accordance with the procedures provided in MASH.

In addition to the standard occupant risk measures, the Post-Impact Head Deceleration (PHD), the Theoretical Head Impact Velocity (THIV), and the Acceleration Severity Index (ASI) were determined and reported. Additional discussion on PHD, THIV, and ASI is provided in MASH.

Table 2. MASH Evaluation Criteria for Longitudinal Barrier

| Structural <br> Adequacy | A. | Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable. |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Occupant Risk | D. | Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.3 and Appendix E of MASH. |  |  |
|  | F. | The vehicle should remain maximum roll and pitch ang | ht during not to exc | collision. The grees. |
|  | H. | Occupant Impact Velocity MASH for calculation proced | see Appen <br> sould sati | Section A5.3 of llowing limits: |
|  |  | Occupan | Velocity |  |
|  |  | Component | Preferred | Maximum |
|  |  | Longitudinal and Lateral | $\begin{gathered} \hline 30 \mathrm{ft} / \mathrm{s} \\ (9.1 \mathrm{~m} / \mathrm{s}) \\ \hline \end{gathered}$ | $\begin{gathered} 40 \mathrm{ft} / \mathrm{s} \\ (12.2 \mathrm{~m} / \mathrm{s}) \\ \hline \end{gathered}$ |
|  | I. | The Occupant Ridedown Acceleration (ORA) (see Appendix A, Section A5.3 of MASH for calculation procedure) should satisfy the following limits: |  |  |
|  |  | Occupant Ridedown Acceleration Limits |  |  |
|  |  | Component | Preferred | Maximum |
|  |  | Longitudinal and Lateral | 15.0 g's | 20.49 g's |

### 3.3 Soil Strength Requirements

In accordance with Chapter 3 and Appendix B of MASH, foundation soil strength must be verified before any full-scale crash testing can occur. During the installation of a soil dependent system, additional W6x16 (W152x23.8) posts are installed near the impact region utilizing the same installation procedures as the system itself. Prior to full-scale testing, a dynamic impact test must be conducted to verify a minimum dynamic soil resistance of $7.5 \mathrm{kips}(33.4 \mathrm{kN})$ at post deflections between 5 and 20 in . ( 127 and 508 mm ) measured at a height of 25 in . ( 635 mm ). If dynamic testing near the system is not desired, MASH permits a static test to be conducted instead and compared against the results of a previously established baseline test. In this situation, the soil must provide a resistance of at least $90 \%$ of the static baseline test at deflections of 5, 10, and 15 in. (127, 254, and 381 mm ). Further details can be found in Appendix B of MASH.

## 4 TEST CONDITIONS

### 4.1 Test Facility

The testing facility is located at the Lincoln Air Park on the northwest side of the Lincoln Municipal Airport and is approximately 5 miles ( 8.0 km ) northwest of the University of NebraskaLincoln.

### 4.2 Vehicle Tow and Guidance System

A reverse-direction, cable tow system with a 1:2 mechanical advantage was used to propel the test vehicle. The distance traveled and the speed of the tow vehicle were one-half that of the test vehicle. The test vehicle was released from the tow cable before impact with the barrier system. A digital speedometer on the tow vehicle increased the accuracy of the test vehicle impact speed.

A vehicle guidance system developed by Hinch [8] was used to steer the test vehicle. A guide flag, attached to the left-front wheel and the guide cable, was sheared off before impact with the barrier system. The $3 / 8-\mathrm{in}$. $(9.5-\mathrm{mm}$ ) diameter guide cable was tensioned to approximately 3,500 $\mathrm{lb}(15.6 \mathrm{kN})$ and supported both laterally and vertically every $100 \mathrm{ft}(30.5 \mathrm{~m})$ by hinged stanchions. The hinged stanchions stood upright while holding up the guide cable, but as the vehicle was towed down the line, the guide flag struck and knocked each stanchion to the ground.

### 4.3 Test Vehicles

For test no. MGSPCB-1, a 2008 Dodge Ram 1500 was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were $4,977 \mathrm{lb}(2,258 \mathrm{~kg}), 4,914 \mathrm{lb}(2,229 \mathrm{~kg})$, and $5,079 \mathrm{lb}(2,304 \mathrm{~kg})$, respectively. The test vehicle is shown in Figure 6, and vehicle dimensions are shown in Figure 7.

For test no. MGSPCB-2, a 2008 Kia Rio was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were $2,434 \mathrm{lb}(1,104 \mathrm{~kg}), 2,436 \mathrm{lb}(1,105 \mathrm{~kg})$, and $2,601 \mathrm{lb}(1,180$ kg ), respectively. The test vehicle is shown in Figure 8, and vehicle dimensions are shown in Figure 9.

For test no. MGSPCB-3, a 2008 Dodge Ram 1500 was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were $5,017 \mathrm{lb}(2,276 \mathrm{~kg}), 5,012 \mathrm{lb}(2,273 \mathrm{~kg})$, and $5,177 \mathrm{lb}(2,348 \mathrm{~kg})$, respectively. The test vehicle is shown in Figure 10, and vehicle dimensions are shown in Figure 11.

The longitudinal component of the center of gravity (c.g.) was determined using the measured axle weights. The Suspension Method [9] was used to determine the vertical component of the c.g. for the 2270P vehicle. This method is based on the principle that the c.g. of any freely suspended body is in the vertical plane through the point of suspension. The vehicle was suspended successively in three positions, and the respective planes containing the c.g. were established. The intersection of these planes pinpointed the final c.g. location for the test inertial condition. The vertical component of the c.g. for the 1100 C vehicle was determined utilizing a procedure published by SAE [10].

The location of the final c.g. for test no. MGSPCB-1 is shown in Figures 7 and 12. The location of the final c.g. for test no. MGSPCB-2 is shown in Figures 9 and 13. The location of the final c.g. for test no. MGSPCB-3 is shown in Figures 11 and 14. Data used to calculate the location of the c.g. and ballast information are shown in Appendix B.

Square, black- and white-checkered targets were placed on the vehicles for reference to be viewed from the high-speed digital video cameras and aid in the video analysis, as shown in Figures 12 through 14. Round, checkered targets were placed on the c.g. on the left-side door, the right-side door, and the roof of the each vehicle.

The front wheels of the each test vehicle were aligned to vehicle standards except the toein value was adjusted to zero so that the vehicles would track properly along the guide cable. A 5B flash bulb was mounted under the vehicle's right-side windshield wiper and was fired by a pressure tape switch mounted at the impact corner of the bumper. The flash bulb was fired upon initial impact with the test article to create a visual indicator of the precise time of impact on the high-speed digital videos. A remote-controlled brake system was installed in each test vehicle so the vehicles could be brought safely to a stop after the test.

### 4.4 Simulated Occupant

For test nos. MGSPCB-1 through MGSPCB-3, A Hybrid II $50^{\text {th }}$-Percentile, Adult Male Dummy, equipped with clothing and footwear, was placed in the right-front seat of the test vehicle with the seat belt fastened. The dummy, which had a final weight of $165 \mathrm{lb}(75 \mathrm{~kg})$, was represented by model no. 572, serial no. 451, and was manufactured by Android Systems of Carson, California. As recommended by MASH, the dummy was not included in calculating the c.g. location.


Figure 6. Test Vehicle, Test No. MGSPCB-1


Figure 7. Vehicle Dimensions, Test No. MGSPCB-1


Figure 8. Test Vehicle, Test No. MGSPCB-2


Figure 9. Vehicle Dimensions, Test No. MGSPCB-2


Figure 10. Test Vehicle, Test No. MGSPCB-3


Figure 11. Vehicle Dimensions, Test No. MGSPCB-3


Figure 12. Target Geometry, Test No. MGSPCB-1


Figure 13. Target Geometry, Test No. MGSPCB-2


Figure 14. Target Geometry, Test No. MGSPCB-3

### 4.5 Data Acquisition Systems

### 4.5.1 Accelerometers

Two environmental shock and vibration sensor/recorder systems were used to measure the accelerations in the longitudinal, lateral, and vertical directions for test nos. MGSPCB-1 through MGSPCB-3. All of the accelerometers were mounted near the center of gravity of the test vehicles. The electronic accelerometer data obtained in dynamic testing was filtered using the SAE Class 60 and the SAE Class 180 Butterworth filter conforming to the SAE J211/1 specifications [11].

The two systems used in all three tests, the SLICE- 1 and SLICE-2 units, were modular data acquisition systems manufactured by Diversified Technical Systems, Inc. (DTS) of Seal Beach, California. The acceleration sensors were mounted inside the bodies of custom built SLICE 6DX event data recorders and recorded data at $10,000 \mathrm{~Hz}$ to the onboard microprocessor. Each SLICE 6 DX was configured with 7 GB of non-volatile flash memory, a range of $\pm 500 \mathrm{~g}$ 's, a sample rate of $10,000 \mathrm{~Hz}$, and a $1,650 \mathrm{~Hz}$ (CFC 1000) anti-aliasing filter. The "SLICEWare" computer software programs and a customized Microsoft Excel worksheet were used to analyze and plot the accelerometer data.

### 4.5.2 Rate Transducers

Two identical angle rate sensor systems mounted inside the bodies of the SLICE-1 and SLICE-2 event data recorders were used to measure the rates of rotation of the test vehicles in test nos. MGSPCB-1 through MGSPCB-3. Each SLICE MICRO Triax ARS had a range of 1,500 degrees/sec in each of the three directions (roll, pitch, and yaw) and recorded data at $10,000 \mathrm{~Hz}$ to the onboard microprocessors. The raw data measurements were then downloaded, converted to the proper Euler angles for analysis, and plotted. The "SLICEWare" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the angular rate sensor data.

### 4.5.3 Retroreflective Optic Speed Trap

The retroreflective optic speed trap was used to determine the speed of the test vehicles before impact. Five retroreflective targets, spaced at approximately $18-\mathrm{in}$. ( $457-\mathrm{mm}$ ) intervals, were applied to the side of each vehicle. When the emitted beam of light was reflected by the targets and returned to the Emitter/Receiver, a signal was sent to the data acquisition computer, recording at $10,000 \mathrm{~Hz}$, as well as the external LED box activating the LED flashes. The speed was then calculated using the spacing between the retroreflective targets and the time between the signals. LED lights and high-speed digital video analysis are only used as a backup in the event that vehicle speeds cannot be determined from the electronic data.

### 4.5.4 Load Cells and String Potentiometers

Load cells were installed on the upstream anchor for test no. MGSPCB-1. The load cells were Transducer Techniques model no. TLL-50K with a load range up to $50 \mathrm{kips}(222 \mathrm{kN}$ ). String potentiometers were also attached to the system at the upstream anchor. The string potentiometers were Unimeasure model no. PA-50-70124 with a displacement range up to 50 in . ( 127 cm ). During testing, output voltage signals were sent from the transducers to a National Instruments PCI-6071E
data acquisition board, acquired with LabView software, and stored on a personal computer at a sample rate of $10,000 \mathrm{~Hz}$. The positioning and set up of the transducers are shown in Figure 15.


Figure 15. Location of Load Cells and String Potentiometers

### 4.5.5 Digital Photography

Six AOS high-speed digital video cameras, seven GoPro digital video cameras, and four JVC digital video cameras were utilized to film test no. MGSPCB-1. Five AOS high-speed digital video cameras, seven GoPro digital video cameras, and four JVC digital video cameras were utilized to film test no. MGSPCB-2. Five AOS high-speed digital video cameras, eight GoPro digital video cameras, and three JVC digital video cameras were utilized to film test no. MGSPCB3. Camera details, camera operating speeds, lens information, and a schematic of the camera locations relative to the system for each test are shown in Figures 16 through 18.

The high-speed videos were analyzed using ImageExpress MotionPlus and RedLake MotionScope software programs. Actual camera speed and camera divergence factors were considered in the analysis of the high-speed videos. A Nikon D3200 digital still camera was also used to document pre- and post-test conditions for all tests.


Figure 16. Camera Locations, Speeds, and Lens Settings, Test No. MGSPCB-1


27

| No. | Type | Operating Speed <br> (frames/sec) | Lens | Lens Setting |
| :---: | :---: | :---: | :---: | :---: |
| AOS-5 | AOS X-PRI Gigabit | 500 | Vivitar 135 mm Fixed | - |
| AOS-6 | AOS X-PRI Gigabit | 500 | Sigma 24-70 DG | - |
| AOS-7 | AOS X-PRI Gigabit | 500 | Canon 17-102 | (0) |
| AOS-8 | AOS S-VIT 1531 | 1000 | Sigma 24-70 | 50 |
| AOS-9 | AOS TRI-VIT 2236 | 500 | Kowa 12 mm Fixed |  |
| GP-3 | GoPro Hero 3+ | 120 |  | - |
| GP-4 | GoPro Hero 3+ | 120 |  |  |
| GP-5 | GoPro Hero 3+ | 120 |  |  |
| GP-6 | GoPro Hero 3+ | 120 |  |  |
| GP-7 | GoPro Hero 4 | 240 |  |  |
| GP-8 | GoPro Hero 4 | 120 |  |  |
| GP-10 | GoPro Hero 4 | 240 |  |  |
| JVC-1 | JVC - GZ-MC500 (Everio) | 29.97 |  |  |
| JVC-4 | JVC - GZ-MG27u (Everio) | 29.97 |  |  |

Figure 17. Camera Locations, Speeds, and Lens Settings, Test No. MGSPCB-2


| No. | Type | Operating Speed <br> (frames/sec) | Lens | Lens Setting |
| :---: | :---: | :---: | :---: | :---: |
| AOS-5 | AOS X-PRI Gigabit | 500 | Vivitar 135 mm Fixed | - |
| AOS-6 | AOS X-PRI Gigabit | 500 | Sigma 28-70 DG | -28 |
| AOS-7 | AOS X-PRI Gigabit | 500 | Fujinon 50 mm Fixed | - |
| AOS-8 | AOS S-VIT 1531 | 500 | Sigma 28-70 | -70 |
| AOS-9 | AOS TRI-VIT 2236 | 500 | Kowa 12 mm Fixed | - |
| GP-3 | GoPro Hero 3+ | 120 |  |  |
| GP-4 | GoPro Hero 3+ | 120 |  |  |
| GP-5 | GoPro Hero 3+ | 120 |  |  |
| GP-6 | GoPro Hero 3+ | 120 |  |  |
| GP-7 | GoPro Hero 4 | 240 |  |  |
| GP-8 | GoPro Hero 4 | 240 |  |  |
| GP-9 | GoPro Hero 4 | 120 |  |  |
| GP-10 | GoPro Hero 4 | 240 |  |  |
| JVC-2 | JVC - GZ-MG27u (Everio) | 29.97 |  |  |
| JVC-3 | JVC - GZ-MG27u (Everio) | 29.97 |  |  |
| JVC-4 | JVC - GZ-MG27u (Everio) | 29.97 |  |  |

Figure 18. Camera Locations, Speeds, and Lens Settings, Test No. MGSPCB-3

## 5 DESIGN DETAILS, TEST NO. MGSPCB-1

The test installation was comprised of $138.5 \mathrm{ft}(42.2 \mathrm{~m})$ of MGS with an end anchorage, a stiffness transition, and $140.8 \mathrm{ft}(42.9 \mathrm{~m})$ of F-shaped PCB at a $15 \mathrm{H}: 1 \mathrm{~V}$ flare, as shown in Figures 19 through 54. The guardrail transition began 10 in . $(254 \mathrm{~mm}$ ) downstream from the upstream end of the fourth PCB, with three full PCB behind the guardrail system. Photographs of the test installation are shown in Figures 55 through 58. Material specifications, mill certifications, and certificates of conformity for the system materials are shown in Appendix A.

The system was constructed with sixteen steel posts spaced at 75 in . $(1,905 \mathrm{~mm})$ on center. Post nos. 3 through 18 were standard $72-\mathrm{in}$. ( $1,829-\mathrm{mm}$ ) steel posts with a soil embedment depth of 40 in . ( $1,016 \mathrm{~mm}$ ). A $6-\mathrm{in}$. wide x $12-\mathrm{in}$. deep x $14 \frac{1}{4}-\mathrm{in}$. long ( $152-\mathrm{mm} \times 305-\mathrm{mm} \times 362-\mathrm{mm}$ ) blockout was used to block the rail away from the front face of each steel post. A 16D double head nail was also driven through a hole in the front flange of the post into the top of the blockout assembly to prevent rotation of the blockout.

Post nos. 1 and 2 were breakaway cable terminal (BCT) timber posts measuring $5 \frac{1}{2}$ in. wide x $71 / 2 \mathrm{in}$. deep x 46 in . long ( $140 \mathrm{~mm} \times 191 \mathrm{~mm} \times 1,168 \mathrm{~mm}$ ) and were placed in 6 -ft ( $1.8-\mathrm{m}$ ) long foundation tubes, as shown in Figure 23. The upstream and downstream ends of the guardrail installation were configured with a trailing-end anchorage system. The guardrail anchorage system was utilized to simulate the strength of other crashworthy end terminals. The anchorage system consisted of timber posts, foundation tubes, anchor cables, bearing plates, rail brackets, and channel struts, which closely resembled the hardware used in the Modified BCT system and is now part of a crashworthy, downstream trailing end terminal [12-15]. The 12-gauge ( $2.66-\mathrm{mm}$ thick) W-beam was mounted at a height of $31 \mathrm{in} .(787 \mathrm{~mm})$ and nested from the midspan between post nos. 12 and 13 to the W-beam end shoe.

Eleven $150-\mathrm{in}$. ( $3,810-\mathrm{mm}$ ) long F-shape PCBs with a target $5,000 \mathrm{psi}(34.5 \mathrm{MPa}) 28$-day compressive strength were connected to the MGS. The concrete barriers were $22 \frac{1}{2} \mathrm{in}$. ( 572 mm ) wide at the base and 8 in . ( 203 mm ) wide at the top. PCB details are shown in Figures 46 and 47. Each of the barrier segments were connected by $1 \frac{1}{4} \mathrm{in}$. $(32 \mathrm{~mm})$ diameter A36 steel connection pins and connector plates placed between $3 / 4-\mathrm{in}$. ( $19-\mathrm{mm}$ ) diameter reinforcing bar loops extending from the end of the barrier sections. The connection loop bar material was A709 Grade 70 or A706 Grade 60 steel. The connection pin details are shown in Figure 49. Mounting plates and blockouts were attached to concrete barriers no. 2 and 3. All PCB segments were set on top of $6-\mathrm{in}$. (152mm ) deep compacted crushed limestone meeting AASHTO Grade B soil specifications or on the concrete tarmac at the MwRSF outdoor test facility.

The overlapped portion of the transition from MGS to PCB incorporated four blockouts between the guardrail and concrete barriers. The blockouts varied in size depending on the distance between the guardrail and PCB and were mounted on blockout mounting plates. The mounting plates were 13 in . $(330 \mathrm{~mm})$ wide and $13^{5} / 16 \mathrm{in}$. $(338 \mathrm{~mm})$ tall. The depth of the plate at the top was $41 / 4 \mathrm{in}$. $(107 \mathrm{~mm})$ and $27 / 8(73 \mathrm{~mm})$ at the bottom. Although the mounting plate has four holes, it was secured to the PCB by two $3 / 4$-in. diameter x 6 -in. long (M20x152) Power Wedge Bolts. On the downstream end of the mounting plate, the plate was secured by the upper hole, and on the upstream side by the lower hole. Transition blockout details are shown in Figure 42, and mounting plate details are shown in Figures 34 through 37.

The guardrail was connected and transitioned to the concrete barrier at an angle of 3.8 degrees by a steel mounting bracket and W -beam end shoe. The W -beam end shoe mounting bracket was connected to the impact side of concrete barrier no. 4 with four 1-in. ( $25-\mathrm{mm}$ ) diameter A325 Grade A bolts through $11 / 8-\mathrm{in}$. ( $29-\mathrm{mm}$ ) diameter bolt holes, which were measured and drilled in the field. The W-beam end shoe mounting bracket was $13^{9} / 16 \mathrm{in}$. ( 344 mm ) tall and $23^{3 / 16} \mathrm{in}$. $(589 \mathrm{~mm})$ wide along the bottom edge. The downstream end was angled 8.0 degrees to be flush against the concrete barrier. A W-beam end shoe was attached to the front side of the mounting bracket with five $7 / 8-\mathrm{in}$. ( $22-\mathrm{mm}$ ) diameter A325 bolts secured by A563 nuts welded to the interior of the mounting bracket.


Figure 19. Test Installation Layout, Test No. MGSPCB-1


Figure 20. Soil Pit Detail, Test No. MGSPCB-1


Figure 21. Transition Detail, Test No. MGSPCB-1


Figure 22. Description of View, Test No. MGSPCB-1


Figure 23. End Section Detail, Test No. MGSPCB-1


Figure 24. Splice and Post Nos. 3-12 Detail, Test No. MGSPCB-1


Figure 25. Splice and Post Nos. 13-18 Detail, Test No. MGSPCB-1


Figure 26. Transition Connection Detail, Test No. MGSPCB-1


DETAIL N


Note: (1) Additional part q2 on the opposite

|  | NDOR PCB-MGS Transition Layout 2 |  | SHEET: <br> 9 of 36 <br> DATE: <br> $3 / 14 / 2016$ |
| :---: | :---: | :---: | :---: |
| Midwest Roadside Safety Facility | BCT Anchor Detail |  | DRAWN BY: <br>  |
|  | DWG. NAME. <br> PCB-MGS_Trans_Layout 2_R8 | $\begin{array}{l\|l\|} \hline \text { SCALE: } & 1: 6 \\ \text { UNITS: } & \text { in. }[\mathrm{mm}] \end{array}$ | $\begin{aligned} & \text { REV. BY: } \\ & \text { KKL/RWB/J } \\ & \text { EK } \end{aligned}$ |



Figure 28. Connector Plate Detail, Test No. MGSPCB-1


Figure 29. Connector Plate Weld Detail, Test No. MGSPCB-1


Figure 30. BCT Anchor Cable and Load Cell Detail, Test No. MGSPCB-1


Figure 31. Modified BCT Anchor Cable, Test No. MGSPCB-1


Figure 32. Shackle and Eye Nut Detail, Test No. MGSPCB-1


Figure 33. Ground Strut Detail, Test No. MGSPCB-1


Figure 34. Blockout Mounting Plate, Test No. MGSPCB-1


Note: (1) Thickness of Blockout Mounting Plate is $1 / 4^{\prime \prime}[6]$.

Figure 35. Blockout Mounting Plate, Flat Pattern, Test No. MGSPCB-1


Figure 36. Blockout Mounting Plate Detail, Test No. MGSPCB-1


Figure 37. Blockout Mounting Plate Detail, Test No. MGSPCB-1


Figure 38. Connector Plate Face Plate, Test No. MGSPCB-1


Part e5


Part e4


Part e3


Part e2

Note: (1) All vertical gussets have a thickness of $1 / 4^{\prime \prime}$ [6].

|  | NDOR PCB-MGS <br> Transition Layout 2 |  | SHEET: $21 \text { of } 36$ |
| :---: | :---: | :---: | :---: |
|  |  |  | $\begin{aligned} & \hline \text { DATE: } \\ & 3 / 14 / 2016 \end{aligned}$ |
| Midwest Roadside Safety Facility | Connector Plate Vertical Gussets |  | $\text { ALL/ } / \mathrm{JEK} / \mathrm{TJ}$ |
|  | DWG. NAME. PCB-MGS_Trans_Loyout 2_R8 | $\begin{array}{\|l\|} \hline \text { SCALE: } 1: 4 \\ \text { UNITS: } \mathrm{in}[\mathrm{~mm}] \end{array}$ | $\begin{array}{\|l\|} \hline \text { REV. BY: } \\ \hline \end{array}$ |

Figure 39. Connector Plate Vertical Gussets, Test No. MGSPCB-1


Figure 40. Connector Plate Horizontal Gussets, Test No. MGSPCB-1


Figure 41. W-Beam Section Detail, Test No. MGSPCB-1


Figure 42. Transition Blockouts, Test No. MGSPCB-1


Figure 43. Post nos. 3-18 Detail, Test No. MGSPCB-1


Figure 44. BCT Timber Post and Foundation Tube, Test No. MGSPCB-1


Figure 45. BCT Post Components and Anchor Brackets, Test No. MGSPCB-1


Figure 46. Portable Concrete Barrier, Test No. MGSPCB-1


Figure 47. Portable Concrete Barrier Profile Detail, Test No. MGSPCB-1


Figure 48. Bill of Bars - Portable Concrete Barriers, Test No. MGSPCB-1
61


Figure 49. Connection Pin Detail, Test No. MGSPCB-1


Figure 50. Guardrail Bolts and Washers, Test No. MGSPCB-1


Figure 51. Hex and Power Wedge Bolts, Test No. MGSPCB-1

| Item No. | QTY. | Description | Material Spec | Hardware Guide |
| :---: | :---: | :---: | :---: | :---: |
| a1 | 1 | W-Beam End Shoe Section | 10 gauge [3.4] AASHTO M180 Galv. | RWE02a |
| व2 | 15 | 12'-6" [3810] W-Beam MGS Section | 12 gauge [2.7] AASHTO M180 Galv. | RWM04a |
| a3 | 1 | 12'-6" [3810] W-Beam MGS End Section | 12 gauge [2.7] AASHTO M180 Galv. | RWM14a |
| a4 | 16 | W6" $\times 8.5$ " [W152×12.6], 72 " Long [1829] Steel Post | ASTM A992 Min. $50 \mathrm{ksi}[345 \mathrm{MPa}$ ] Steel Galv. or W6x9 [W152×13.4] ASTM A36 Min. <br> 36 ksi [ 248 MPa ] Steel Galv. | PWE06 |
| a5 | 16 | 6"x12" $\times 14$ 1/4" [152×305×368] Timber Blockout for Steel Posts | SYP Grade No. 1 or better | PDB10a |
| a6 | 16 | 16D Double Head Nail | - | - |
| b1 | 2 | BCT Timber Post - MGS Height | SYP Grade No. 1 or better (No knots 18" [457] above or below ground tension face) | PDF01 |
| b2 | 2 | 72" [1829] Long Foundation Tube | ASTM A500 Grade B Galv. | PTE06 |
| b3 | 1 | Ground Strut Assembly | ASTM A36 Steel Galv. | PFP02 |
| b4 | 1 | $23 / 8$ " [60] O.D. x 6" [152] Long BCT Post Sleeve | ASTM A53 Grade B Schedule 40 Galv. | FMM02 |
| b5 | 1 | 8 "x8" $55 / 8$ " [203x203x16] Anchor Bearing Plate | ASTM A36 Steel Galv. | FPB01 |
| b6 | 1 | Anchor Bracket Assembly | ASTM A36 Steel Galv. | FPA01 |
| c1 | 4 | Blockout Mounting Plate | ASTM A36 Steel Galv. | - |
| c2 | 1 | $6^{\prime \prime} \times 17$ 3/4" $\times 141 / 4^{\prime \prime}[152 \times 451 \times 368$ ] Timber Blockout for Steel Posts | SYP Grade No. 1 or better | - |
| c3 | 1 | $6^{\prime \prime} \times 123 / 4$ " $\times 141 / 4^{\prime \prime}[152 \times 324 \times 368$ ] Timber Blockout for Steel Posts | SYP Grade No. 1 or better | - |
| c4 | 1 | $6 " \times 7$ 3/4" $141 / 4$ " [152×197*368] Timber Blockout for Steel Posts | s SYP Grade No. 1 or better | - |
| c5 | 1 | $6 " \times 2$ 3/4"×14 1/4" [152×70×368] Timber Blockout for Steel Posts | SYP Grade No. 1 or better | - |
| d1 | 11 | Portable Concrete Barrier | min $\mathrm{f}^{\prime} \mathrm{c}=5000 \mathrm{psi}[34.5 \mathrm{MPa}$ ] | - |
| d2 | 10 | 1 1/4" [32] Dia., 28" [711] Long Connector Pin | ASTM A36 | FMWO2 |
| d3 | 132 | 1/2" [13] Dia., 72" [1829] Long Form Bar | ASTM A615 Grade 60 | - |
| d4 | 22 | 1/2" [13] Dia., 146" [3708] Long Longitudinal Bar | ASTM A615 Grade 60 | - |
| d5 | 33 | 5/8" [16] Dia., 146" [3708] Long Longitudinal Bar | ASTM A615 Grade 60 | - |
| d6 | 66 | 3/4" [19] Dia., 36" [914] Long Anchor Loop Bar | ASTM A615 Grade 60 | - |
| d7 | 22 | 3/4" [19] Dia., 102" [2591] Long Connection Loop Bar | ASTM A709 Grade 70 or A706 Grade 60 | - |
| d8 | 22 | 3/4" [19] Dia., 91" [2311] Long Connection Loop Bar | ASTM A709 Grade 70 or A706 Grade 60 | - |
|  |  |  | Midwest Roadside Safety Facility <br> NDOR PCB-MGS Transition Layout Bill of Materials DWG. NAME. PCB-MGS_Trans_Layout 2_R8 |  |



Figure 53. Bill of Materials Continued, Test No. MGSPCB-1


Figure 54. Bill of Materials Continued, Test No. MGSPCB-1


[^0]

[^1]

8


Figure 57. Test Installation, Test No. MGSPCB-1


## 6 FULL-SCALE CRASH TEST NO. MGSPCB-1

### 6.1 Static Soil Test

Before full-scale crash test no. MGSPCB-1 was conducted, the strength of the foundation soil was evaluated with a static test, as described in MASH. The static test results, as shown in Appendix C, demonstrated a soil resistance above the baseline test limits. Thus, the soil provided adequate strength, and full-scale crash testing could be conducted on the barrier system.

### 6.2 Weather Conditions

Test no. MGSPCB-1 was conducted on July 20, 2015 at approximately 12:30 p.m. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/LNK) were reported and are shown in Table 3.

Table 3. Weather Conditions, Test No. MGSPCB-1

| Temperature | $86^{\circ} \mathrm{F}$ |
| :--- | :--- |
| Humidity | $53 \%$ |
| Wind Speed | 6 mph |
| Wind Direction | $310^{\circ}$ from True North |
| Sky Conditions | Sunny |
| Visibility | 10 Statute Miles |
| Pavement Surface | Dry |
| Previous 3-Day Precipitation | 0.03 in. |
| Previous 7-Day Precipitation | 0.64 in. |

### 6.3 Test Description

The 4,914-lb (2,229-kg) pickup truck impacted the MGS to PCB transition at a speed of $63.2 \mathrm{mph}(101.8 \mathrm{~km} / \mathrm{h})$ and at an angle of 25.3 degrees. Initial vehicle impact was to occur at the centerline of post no. 14, as shown in Figure 63, which was selected using LS-DYNA analysis to maximize pocketing and the probability of wheel snag. The actual point of impact was $2 \frac{1}{2} \mathrm{in}$. ( 64 mm ) downstream from the intended impact point. A sequential description of the impact events is contained in Table 4. A summary of the test results and sequential photographs are shown in Figure 59. Additional sequential photographs are shown in Figures 60 and 61. Documentary photographs of the crash test are shown in Figure 62. The vehicle came to rest $234 \mathrm{ft}-1 \mathrm{in}$. ( 71.3 m ) downstream from impact and $21 \mathrm{ft}-11 \mathrm{in}$. 6.7 m ) in front of the barrier oriented downstream. The vehicle trajectory and final position are shown in Figures 59 and 64.

Table 4. Sequential Description of Impact Events, Test No. MGSPCB-1

| TIME <br> (sec) | EVENT |
| :---: | :---: |
| 0.000 | The vehicle impacted the barrier $21 / 2$ in. ( 64 mm ) downstream from post no. 14. |
| 0.006 | Vehicle's right-front bumper deformed. |
| 0.008 | Vehicle's right headlight and right fender deformed. |
| 0.018 | Vehicle's right-front tire contacted rail downstream from post no. 14, and post no. 14 deflected backward. |
| 0.022 | Post no. 16 twisted counterclockwise. |
| 0.026 | Post no. 10 rotated backward, and post no. 15 twisted clockwise and deflected downstream. |
| 0.030 | Post no. 14 twisted clockwise, vehicle's right-front door deformed, and post nos. 9 and 11 twisted clockwise. |
| 0.034 | Post nos. 5, 6, 7, 8, and 12 began to twist clockwise. |
| 0.036 | Post no. 13 twisted clockwise, and post no. 15 twisted counterclockwise. |
| 0.040 | Vehicle hood deformed, post no. 15 rotated backward, and post no. 4 twisted clockwise. |
| 0.046 | Post no. 3 twisted clockwise, and post no. 15 deflected downstream. |
| 0.052 | Vehicle's right-rear door deformed, and post no. 13 deflected backward. |
| 0.054 | Post no. 16 deflected backward, vehicle yawed away from barrier, and post no. 15 bent downstream. |
| 0.060 | Rail detached from post bolt at post no. 15. |
| 0.064 | Post no. 16 deflected downstream. |
| 0.072 | Blockout no. 15 twisted counterclockwise, and post no. 15 twisted clockwise. |
| 0.082 | Post no. 17 deflected backward. |
| 0.088 | Vehicle's right-front tire contacted post no. 15. |
| 0.110 | Top of vehicle's right-front door pulled away from frame. |
| 0.114 | Post no. 16 bent downstream. |
| 0.120 | Rail detached from post bolt at post no. 16, and post no. 18 deflected backward. |
| 0.134 | Post no. 17 twisted counterclockwise. |
| 0.138 | Post no. 18 twisted counterclockwise. |
| 0.144 | Post no. 16 contacted concrete barrier no. 1 and became wedged against it. |
| 0.146 | Concrete barrier no. 1 rotated counterclockwise, and post no. 17 bent backward. |
| 0.156 | Vehicle's right front tire contacted post no. 16. |
| 0.180 | Vehicle's right quarter panel contacted rail at post no. 14. |
| 0.182 | Post no. 14 bent upstream, vehicle's tailgate deformed, upstream end of concrete barrier no. 1 deflected backward, and post no. 17 contacted concrete barrier no. 1 |
| 0.186 | Vehicle's left-front tire became airborne, and right taillight deformed. |


| 0.194 | Rail detached from post bolt at post no. 17. |
| :--- | :--- |
| 0.198 | Vehicle rolled toward barrier. |
| 0.203 | Post no. 18 contacted concrete barrier no. 1. |
| 0.224 | Rail between post nos. 16 and 17 contacted concrete barrier no. 1. |
| 0.243 | Vehicle was parallel to system at a speed of $48.3 \mathrm{mph}(77.7 \mathrm{~km} / \mathrm{h})$. |
| 0.252 | Vehicle pitched downward, and blockout no. 15 detached from post no. 15. |
| 0.282 | Concrete barrier no. 2 rotated counterclockwise. |
| 0.284 | Concrete barrier no. 2 deflected backward. |
| 0.290 | Vehicle's left-rear tire became airborne. |
| 0.298 | Vehicle's right taillight detached. |
| 0.312 | Vehicle pitched upward, and concrete barrier no. 1 rolled away from traffic side <br> of system. |
| 0.362 | Vehicle's right headlight detached. |
| 0.402 | Vehicle's right-front tire was detached. |
| 0.408 | Vehicle rolled away from barrier. |
| 0.412 | Vehicle pitched downward. |
| 0.448 | Concrete barrier no. 1 rolled toward traffic side of system. |
| 0.520 | Vehicle exited system at a speed of 38.6 mph (62.1 km/h) and at an angle of 21.0 <br> degrees. <br> 0.610 Vehicle's left-front tire regained contact with ground. |
| 0.730 | Vehicle rolled toward barrier. |
| 0.746 | Vehicle pitched upward. |
| 0.780 | Vehicle's left-rear tire regained contact with ground. |
| 0.826 | Vehicle's right-rear tire regained contact with ground. |
| 0.978 | Vehicle rolled away from barrier. |
| 0.984 | Vehicle pitched downward. |

### 6.4 Barrier Damage

Damage to the barrier was moderate, as shown in Figures 65 through 70. Barrier damage consisted of rail deformation, bending of the steel posts, contact marks on the front face of the concrete segments, and spalling of the concrete. The length of vehicle contact along the barrier was approximately $37 \mathrm{ft}-81 / 2 \mathrm{in}$. ( 11.5 m ), which spanned from $143 / 4 \mathrm{in}$. ( 375 mm ) upstream from post no. 14 to 12 in . ( 305 mm ) upstream from blockout no. 20 .

Post no. 1 had vertical cracking at the middle of the front face along the entire length, and post no. 2 had cracking on the upstream side extending outward from the BCT hole. Post nos. 3 through 13 twisted downstream, and the front face of their blockouts had dents and gouging from the guardrail. The front flange of post no. 14 partially twisted clockwise along the length of the
blockout, and blockout no. 14 had cracking on the bottom front upstream corner. Contact marks began $143 / 4 \mathrm{in}$. ( 375 mm ) upstream of post no. 14 and were due to the right-rear corner of the vehicle slapping the guardrail after the initial impact. The bottom corrugation of the guardrail flattened from 13 in. ( 330 mm ) upstream of post no. 15 to post no. 17. Post no. 15 had a dent in the front flange $17 \mathrm{in} .(432 \mathrm{~mm})$ from the top, and blockout no. 15 disengaged from the rail due to bolt shear. Post no. 16 twisted and bent downstream with the downstream side of the post against the upstream face of concrete barrier no. 1. The downstream flanges of post no. 16 were bent outward, and the steel fractured at the downstream bottom blockout holes. Blockout no. 16 was partially fractured, and the post bolt was bent 90 degrees. Post no. 17 bent downstream, and the blockout was partially fractured. The top back upstream flange of post no. 17 was bent inward. Post no. 18 had a dent located 2 in . $(51 \mathrm{~mm}$ ) above the ground line on the back downstream flange. A kink formed on the top corrugation, extending from $111 / 2 \mathrm{in}$. ( 292 mm ) upstream of post no. 18 to 17 in . $(432 \mathrm{~mm})$ downstream of post no. 18. The blockout mounts that connected the rail to the PCB, and the mount for the end shoe transition were undamaged.

Contact marks on concrete barrier no. 1 extended 17 in . ( 432 mm ) up the front face of the barrier and ran diagonally to the first anchor hole, and contact marks from the tire started 24 in . ( 610 mm ) upstream of the midpoint on the bottom tapper. An indented contact mark extended upward 28 in . ( 711 mm ) on the front face of concrete barrier no. 1 and stopped 6 in . ( 152 mm ) downstream of the midpoint. Concrete barrier no. 1 also had spalling on the upstream corner located 8 in . ( 203 mm ) and $12 \mathrm{in}$. ( 305 mm ) from the ground line. Concrete barrier no. 2 had contact marks 6 in. ( 152 mm ) upstream from blockout no. 19 and 12 in . ( 305 mm ) upstream from blockout no. 20.

The maximum permanent set of the rail, posts, and concrete barriers for the system was $263 / 4 \mathrm{in}$. $(679 \mathrm{~mm})$ at the rail at post no. $16,221 / 2(572 \mathrm{~mm})$ at post no. 16 , and $55 / 8 \mathrm{in}$. $(168 \mathrm{~mm})$ at the downstream target on concrete barrier no. 1 , as measured in the field. The maximum lateral dynamic deflection of the rail, posts, and concrete barriers was 36.1 in . $(917 \mathrm{~mm}$ ) at the rail at post no. $16,27.7 \mathrm{in}$. ( 704 mm ) at post no. 15 , and $6.7 \mathrm{in} .(170 \mathrm{~mm})$ at the downstream end of concrete barrier no. 1, as determined from high-speed digital video analysis. The working width of the system was found to be 58.7 in . $(1,491 \mathrm{~mm})$, also determined from high-speed digital video analysis.

### 6.5 Vehicle Damage

The damage to the vehicle was moderate, as shown in Figures 71 through 73. The maximum occupant compartment deformations are listed in Table 5 along with the deformation limits established in MASH for various areas of the occupant compartment. Note that none of the MASH-established deformation limits were violated. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix D.

The majority of the damage was concentrated on the right-front corner and right side of the vehicle where the impact occurred. The right headlight and fog light disengaged. The right side of the front bumper was crushed inward and back. The right-front wheel detached. The right-front fender had a $14-\mathrm{in}$. $(356-\mathrm{mm}$ ) long by $2-\mathrm{in}$. ( $51-\mathrm{mm}$ ) deep dent located above the wheel well. The right-front door had a $14-\mathrm{in}$. ( $356-\mathrm{mm}$ ) long dent along the bottom and was separated $11 / 4 \mathrm{in}$. (32 mm ) from the door frame. Contact marks ran along the right side of the vehicle, starting at the front fender and extending 67 in . $(1,702 \mathrm{~mm})$ to the rear door.

The front of the right quarter panel had an 11-in. (279-mm) scrape approximately 14 in . $(356 \mathrm{~mm})$ from the bottom. The right quarter panel had contact marks starting behind the wheel well and extending 11 in . $(279 \mathrm{~mm}$ ) toward the rear of the vehicle and a $15-\mathrm{in}$. $(381-\mathrm{mm})$ by $17-$ in. $(432-\mathrm{mm})$ dent located behind the wheel well. The right-rear tire deflated due to a $2-\mathrm{in}$. ( $51-$ mm ) cut at the outer edge, and the right-rear wheel had a $1-\mathrm{in}$. ( $25-\mathrm{mm}$ ) fracture on the outer wheel rim. The right taillight disengaged, and the right-rear bumper and tailgate partially disengaged.

The vehicle grill was partially disengaged, and the windshield had a $26-\mathrm{in}$. ( $660-\mathrm{mm}$ ) diameter crack with spidering. The airbags deployed due to impact with a secondary concrete barrier system that was set up to stop the vehicle after exiting the system and not due to impact with the MGS to PCB transition system. Although some front-end damage may be associated with this secondary impact, it is indistinguishable from the primary system impact damage.

Table 5. Maximum Occupant Compartment Deformations by Location, Test No. MGSPCB-1

| LOCATION | MAXIMUM <br> DEFORMATION <br> in. (mm) | MASH ALLOWABLE <br> DEFORMATION <br> in. (mm) |
| :---: | :---: | :---: |
| Wheel Well \& Toe Pan | $0.36(9)$ | $\leq 9(229)$ |
| Floor Pan \& Transmission Tunnel | $0.24(6)$ | $\leq 12(305)$ |
| Side Front Panel (in Front of A-Pillar) | $0.78(20)$ | $\leq 12(305)$ |
| Side Door (Above Seat) | $0.56(14)$ | $\leq 9(229)$ |
| Side Door (Below Seat) | $0.87(22)$ | $\leq 12(305)$ |
| Roof | 0 | $\leq 4(102)$ |
| Windshield | 0 | $\leq 3(76)$ |

### 6.6 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions are shown in Table 6. Note that the OIVs and ORAs were within the suggested limits provided in MASH. The calculated THIV, PHD, and ASI values are also shown in Table 6. The results of the occupant risk analysis, as determined from the accelerometer data, are summarized in Figure 59. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix E.

The vehicle airbag system was activated prior to test no. MGSPCB-1, and data was recorded in the Airbag Control Module (ACM) if the airbags fired. In this test, the impact with the barrier system was not sufficient to fire the airbags, but a secondary impact with downstream protection PCBs did cause the airbags to fire. The ACM acceleration and velocity data are compared to the standard acceleration transducers in Appendix E.

Table 6. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. MGSPCB-1

| Evaluation Criteria |  | Transducer |  | MASH <br> Limits |
| :---: | :---: | :---: | :---: | :---: |
|  |  | SLICE-1 | SLICE-2 |  |
| OIV <br> $\mathrm{ft} / \mathrm{s}(\mathrm{m} / \mathrm{s})$ | Longitudinal | -12.63 (-3.85) | -12.80 (-3.90) | $\pm 40$ (12.2) |
|  | Lateral | -16.60 (-5.06) | -15.72 (-4.79) | $\pm 40$ (12.2) |
| $\begin{gathered} \text { ORA } \\ \text { g's } \end{gathered}$ | Longitudinal | 19.77 | 20.34 | $\pm 20.49$ |
|  | Lateral | -11.03 | -12.47 | $\pm 20.49$ |
| MAX. <br> ANGULAR DISPL. deg. | Roll | 14.35 | 10.20 | $\pm 75$ |
|  | Pitch | -5.13 | -6.15 | $\pm 75$ |
|  | Yaw | -39.86 | -40.19 | not required |
| $\begin{gathered} \text { THIV } \\ \mathrm{ft} / \mathrm{s}(\mathrm{~m} / \mathrm{s}) \end{gathered}$ |  | 19.62 (5.98) | 20.05 (6.11) | not required |
| $\begin{gathered} \hline \text { PHD } \\ \text { g's } \end{gathered}$ |  | 20.60 | 20.64 | not required |
| ASI |  | 0.82 | 0.85 | not required |

### 6.7 Load Cells and String Potentiometers

The pertinent data from the load cells and string potentiometers was extracted from the bulk signal and analyzed using the transducer's calibration factor. The recorded data and analyzed results are detailed in Appendix F. The exact moment of impact could not be determined from the transducer data as impact may have occurred a few milliseconds prior to a measurable signal increase in the data. Thus, the extracted data curves should not be taken as precise time after impact, but rather a general time line between events within the data curve itself.

### 6.8 Discussion

The analysis of the test results for test no. MGSPCB-1 showed that the MGS to PCB transition system adequately contained and redirected the 2270P vehicle with controlled lateral displacements of the barrier. There were no detached elements nor fragments which showed potential for penetrating the occupant compartment nor presented undue hazard to other traffic. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle did not penetrate nor ride over the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix E, were deemed acceptable, because they did not adversely influence occupant risk safety criteria nor cause rollover. After impact, the vehicle exited the barrier at an angle of 21.0 degrees, and its trajectory did not violate the bounds of the exit box. Therefore, test no. MGSPCB1, conducted on the MGS to PCB transition system, was determined to be acceptable according to the MASH safety performance criteria for test designation no. 3-21.

0.000 sec

0.056 sec


0.146 sec

0.243 sec


- Vehicle Stopping Distance...
. $234 \mathrm{ft}-1 \mathrm{in} .(71.3 \mathrm{~m})$ downstream Lateral.

- Vehicle Damage . Moderate VDS [16] .01-RFQ-4
CDC [17]. 01-RDEW-4
Maximum Interior Deformation ..................................................................................................................................
- Test Article Damage ........................ Moderate
- Maximum Test Article Deflections
Permanent Set. $\qquad$ $.26^{3 / 4}$ in. $(679 \mathrm{~mm})$
Dynamic. 36.1 in. ( 917 mm ) Working Width $58.7 \mathrm{in} .(1,491 \mathrm{~mm})$
- Transducer Data

| Evaluation Criteria |  | Transducer |  | MASH Limit |
| :---: | :---: | :---: | :---: | :---: |
|  |  | SLICE-1 | SLICE-2 <br> (primary) |  |
| $\overline{\text { OIV }}$ | Longitudinal | -12.63 (-3.85) | -12.80 (-3.90) | $\pm 40$ (12.2) |
| $(\mathrm{m} / \mathrm{s})$ | Lateral | -16.60 (-5.06) | -15.72 (-4.79) | $\pm 40$ (12.2) |
| ORA | Longitudinal | 19.77 | 20.34 | $\pm 20.49$ |
| g's | Lateral | -11.03 | -12.47 | $\pm 20.49$ |
| MAX | Roll | 14.35 | 10.20 | $\pm 75$ |
| ANGULAR DISP. | Pitch | -5.13 | -6.15 | $\pm 75$ |
|  | Yaw | -39.86 | -40.19 | not required |
| THIV - | /s (m/s) | 19.62 (5.98) | 20.05 (6.11) | not required |
| PHD | -g's | 20.60 | 20.64 | not required |
|  |  | 0.82 | 0.85 | not required |

Figure 59. Summary of Test Results and Sequential Photographs, Test No. MGSPCB-1


Figure 60. Additional Sequential Photographs, Test No. MGSPCB-1


Figure 61. Additional Sequential Photographs, Test No. MGSPCB-1


Figure 62. Documentary Photographs, Test No. MGSPCB-1


Figure 63. Impact Location, Test No. MGSPCB-1


Figure 64. Vehicle Final Position, Test No. MGSPCB-1

$\stackrel{\infty}{\infty}$


Figure 65. System Damage, Test No. MGSPCB-1

$\infty$


Figure 66. System Damage Between Post Nos. 12 and 15, Test No. MGSPCB-1

$\infty$


$\infty$


Figure 68. Post Nos. 16 and 17 Damage, Test No. MGSPCB-1




${ }_{\circ}^{\infty}$


MwRSF Report No. TRP--03-335-17 $\begin{array}{r}\text { May 2, } 2017\end{array}$


Figure 72. Windshield Damage and Occupant Compartment Deformation, Test No. MGSPCB-1


Figure 73. Undercarriage Damage, Test No. MGSPCB-1

## 7 DESIGN DETAILS, TEST NO. MGSPCB-2

The MGS to PCB transition test installation for test no. MGSPCB-2 was identical to that used in test no. MGSPCB-1, as shown in Figure 74. Photographs of the test installation are shown in Figures 75 through 77. Material specifications, mill certifications, and certificates of conformity for the system materials are shown in Appendix A.



Figure 75. Test Installation, Test No. MGSPCB-2


0


Figure 76. Test Installation, Test No. MGSPCB-2


[^2]
$\bigcirc$


## 8 FULL-SCALE CRASH TEST NO. MGSPCB-2

### 8.1 Static Soil Test

Before full-scale crash test no. MGSPCB-2 was conducted, the strength of the foundation soil was evaluated with a static test, as described in MASH. The static test results, as shown in Appendix C, demonstrated a soil resistance above the baseline test limits. Thus, the soil provided adequate strength, and full-scale crash testing could be conducted on the barrier system.

### 8.2 Weather Conditions

Test no. MGSPCB-2 was conducted on July 30, 2015 at approximately 12:15 p.m. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/LNK) were reported and are shown in Table 7.

Table 7. Weather Conditions, Test No. MGSPCB-2

| Temperature | $89^{\circ} \mathrm{F}$ |
| :--- | :--- |
| Humidity | $31 \%$ |
| Wind Speed | 14 mph |
| Wind Direction | $220^{\circ}$ from True North |
| Sky Conditions | Sunny |
| Visibility | 10 Statute Miles |
| Pavement Surface | Dry |
| Previous 3-Day Precipitation | 0.02 in. |
| Previous 7-Day Precipitation | 0.51 in. |

### 8.3 Test Description

The $2,436-\mathrm{lb}(1,105-\mathrm{kg})$ car impacted the MGS to PCB transition at a speed of 65.1 mph $(104.8 \mathrm{~km} / \mathrm{h})$ and at an angle of 24.0 degrees. Initial vehicle impact was to occur 93.75 in . (2,381 mm ) upstream from the centerline of the second splice upstream from the end shoe, as shown in Figure 83. This impact point was selected to maximize loading of the W -beam rail element and evaluate the propensity for the small car to snag on the tapered W-beam and the end shoe connection bracket as noted in Chapter 3. The actual point of impact was $53 / 4 \mathrm{in}$. ( 146 mm ) upstream from the intended impact point. A sequential description of the impact events is contained in Table 8. A summary of the test results and sequential photographs are shown in Figure 78. Additional sequential photographs are shown in Figures 79 and 80. Documentary photographs of the crash test are shown in Figures 81 and 82 . The vehicle came to rest $157 \mathrm{ft}-5 \mathrm{in}$. ( 48.0 m ) downstream of impact and $22 \mathrm{ft}(6.7 \mathrm{~m})$ in front of the barrier oriented downstream. The vehicle trajectory and final position are shown in Figures 78 and 84.

Table 8. Sequential Description of Impact Events, Test No. MGSPCB-2

| $\begin{gathered} \text { TIME } \\ (\mathrm{sec}) \\ \hline \end{gathered}$ | EVENT |
| :---: | :---: |
| 0.000 | Vehicle impacted barrier $991 / 2$ in. ( 2527 mm ) upstream from centerline of the second splice upstream from end shoe. |
| 0.002 | Vehicle's right headlight contacted rail between blockout nos. 19 and 20 and deformed. |
| 0.006 | Blockout nos. 19 and 20 rotated backward, and vehicle's right side mirror deformed. |
| 0.010 | Concrete barrier no. 2 rolled away from traffic side of system. |
| 0.014 | Vehicle hood deformed and overrode rail between blockout nos. 19 and 20. |
| 0.024 | Vehicle's left headlight deformed, blockout nos. 19 and 20 deflected backward, and vehicle's left fender deformed. |
| 0.030 | Vehicle yawed away from barrier. |
| 0.032 | Post no. 18 rotated clockwise, vehicle pitched downward, and post nos. 3 and 4 rotated clockwise. |
| 0.036 | Left-front side of roof deformed, and post no. 18 began to deflect backward. |
| 0.040 | Post no. 5 rotated clockwise, post no 2 deflected backward, and vehicle's rightfront tire contacted concrete barrier no. 2. |
| 0.044 | Concrete barrier no. 2 rotated counterclockwise, blockout no. 21 deflected backward, concrete barrier no. 3 rolled away from traffic side of system and rotated counterclockwise, post nos. $6,7,9$, and 10 rotated clockwise, and post nos. 8,16 , and 17 rotated clockwise. |
| 0.048 | Post nos. 11 and 14 rotated clockwise. |
| 0.050 | Blockout no. 22 deflect backward, concrete barrier no. 1 rolled away from the traffic side of system, concrete barrier no. 2 rotated clockwise, post no. 12 rotated clockwise, vehicle's right airbag deployed, vehicle's left-front door deformed, post no. 13 rotated clockwise, and the upstream end of concrete barrier no. 3 fractured. |
| 0.054 | Vehicle's windshield deformed due to airbag contact, and concrete barrier no. 1 rotated clockwise. |
| 0.060 | Vehicle's right-front door deformed and vehicle rolled away from barrier. |
| 0.074 | Concrete barrier no. 4 rotated clockwise. |
| 0.076 | Concrete barrier no. 2 deflected backward and vehicle's right-front window shattered. |
| 0.080 | Post no. 17 deflected backward. |
| 0.084 | Blockout no. 19 rotated forward and counterclockwise. |
| 0.108 | Concrete barrier no. 4 rolled away from traffic side of system. |
| 0.112 | Concrete barrier no. 5 rolled away from traffic side of system. |
| 0.134 | Blockout no. 20 rotated forward. |
| 0.136 | Concrete barrier no. 3 rolled toward traffic side of system. |


| 0.146 | Concrete barrier no. 4 rotated counterclockwise. |
| :--- | :--- |
| 0.150 | Vehicle rolled toward barrier. |
| 0.154 | Vehicle pitched upward and concrete barrier no. 6 rotated counterclockwise. |
| 0.162 | Concrete barrier no. 5 rotated clockwise and concrete barrier no. 6 deflected <br> backward. |
| 0.232 | Vehicle was parallel to barrier at a speed of $43.6 \mathrm{mph}(70.2 \mathrm{~km} / \mathrm{h})$. |
| 0.240 | Rail detached from post bolt at blockout no. 19. |
| 0.244 | Vehicle hood was jarred open. |
| 0.264 | Vehicle pitched downward. |
| 0.290 | Blockout no. 19 rotated clockwise. |
| 0.354 | Vehicle rolled away from barrier. |
| 0.437 | Vehicle exited system at a speed of $41.2 \mathrm{mph}(66.3 \mathrm{~km} / \mathrm{h})$ and an angle of 13.6 <br> degrees. |

### 8.4 Barrier Damage

Damage to the barrier was moderate, as shown in Figures 85 through 89. Barrier damage consisted of rail deformation, contact marks on the front face of the concrete segments, and spalling of the concrete. The length of vehicle contact along the barrier was approximately $33 \mathrm{ft}-$ $83 / 4 \mathrm{in}$. ( 10.3 m ), which spanned from $53 / 4 \mathrm{in}$. ( 146 mm ) upstream of the intended impact point to $81 / 2 \mathrm{in}$. ( 216 mm ) downstream of the upstream end of concrete barrier no. 5 .

Post nos. 1 and 2 rotated downstream and blockout nos. 3 through 18 twisted downstream. Post no. 18 deflected backward. The rail disengaged from the bolt at blockout no. 19 and the blockout mounting plate translated $5 / 8 \mathrm{in}$. ( 16 mm ) upstream. The rail kinked at the bottom of the rail at blockout no. 19 and at the top of the rail $33 / 4 \mathrm{in}$. ( 95 mm ) upstream of blockout no. 19. Blockout no. 20 twisted upstream and had a vertical crack at the bolt hole. The blockout mounting plate translated $3 / 8$ in. ( 10 mm ) upstream, and the rail flattened at the bottom corrugation at blockout no. 20. Blockout no. 21 rotated upstream, and the mounting plate translated $3 / 4 \mathrm{in}$. ( 19 mm ) upstream. Blockout no. 22 rotated upstream, and the mounting plate translated $5 / 8 \mathrm{in}$. ( 16 mm ) upstream. The blockout mounts that connected the rail to the PCB and the mount for the end shoe transition were undamaged.

Concrete barrier no. 2 had a $14-\mathrm{in}$. ( $356-\mathrm{mm}$ ) tall by $43 / 4-\mathrm{in}$. ( $121-\mathrm{mm}$ ) long by $21 / 2-\mathrm{in}$. ( $64-$ mm ) deep spall located on the upstream front corner 7 in . ( 178 mm ) from the top. Tire marks began $541 / 4 \mathrm{in}$. ( $1,378 \mathrm{~mm}$ ) upstream from the downstream end and traveled upward to a maximum height of 19 in . ( 483 mm ). The tire marks continued onto concrete barrier no. 3 and extended across the entire front face. Concrete barrier no. 3 had spalling on the upstream back corner of the barrier extending laterally from the slope break point to the top. The reinforcement and loop bar were exposed. Tire marks extended along the entire bottom front face of concrete barrier no. 4 with a maximum contact height of 7 in . ( 178 mm ) from the bottom.

The maximum permanent set of the rail, posts, and concrete barriers for the system was $231 / 2 \mathrm{in}$. ( 597 mm ) at the rail at the midspan between blockout nos. 20 and $21,41 / 8 \mathrm{in}$. ( 105 mm ) at
post no. 18 , and $257 / 8$ in. $(657 \mathrm{~mm})$ at the downstream target on concrete barrier no. 2 , as measured in the field. The maximum lateral dynamic deflection of the rail, posts, and concrete barriers for the system was 26.3 in . ( 667 mm ) at the rail at blockout no. $20,3.1 \mathrm{in} .(78 \mathrm{~mm})$ at post no. 18, and $28.1 \mathrm{in} .(714 \mathrm{~mm})$ at the downstream target of concrete barrier no. 2 , as determined from highspeed digital video analysis. The working width of the system was found to be 61.4 in . $(1,560$ mm ), also determined from high-speed digital video analysis.

### 8.5 Vehicle Damage

The damage to the vehicle was moderate, as shown in Figures 90 through 92. The maximum occupant compartment deformations are listed in Table 9 along with the deformation limits established in MASH for various areas of the occupant compartment. Note that none of the MASH occupant compartment deformation limits were violated. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix D.

The majority of the damage was concentrated on the right-front corner and right side of the vehicle where the impact occurred. The right-front fender was displaced back $5 \frac{1}{2} \mathrm{in}$. ( 140 mm ) and left $7 \mathrm{in} .(178 \mathrm{~mm})$. The right headlight disengaged. The right-front wheel cover was bent, and the right-front tire was partially disengaged from the wheel. Crush began at the front fender extending back 45 in . ( $1,143 \mathrm{~mm}$ ) and upward 4 in . ( 102 mm ). Additional crush started 15 in . (381 mm ) up from the bottom of the right-front wheel well and extended back 28 in . ( 711 mm ) and up 4 in. ( 102 mm ).

The right A-Pillar buckled at 9 in . ( 229 mm ) and $22 \mathrm{in} .(559 \mathrm{~mm}$ ) from the bottom. The right-front door was ajar 3 in . $(76 \mathrm{~mm}$ ) at the top, and the right-front window was shattered. The right-front door had $3-\mathrm{in}$. ( $76-\mathrm{mm}$ ) tall contact marks starting 21 in . ( 533 mm ) from the bottom. The roof had two depressions starting at the right edge. A $2-\mathrm{in}$. ( $51-\mathrm{mm}$ ) by $2-\mathrm{in}$. ( $51-\mathrm{mm}$ ) depression was located 2 in . ( 51 mm ) from the front edge and the other was a $10-\mathrm{in}$. ( $254-\mathrm{mm}$ ) by $10-\mathrm{in}$. ( $254-\mathrm{mm}$ ) depression located 16 in . ( 406 mm ) from the front edge. Contact marks started $15 \mathrm{in} .(381 \mathrm{~mm})$ and $23 \mathrm{in} .(584 \mathrm{~mm})$ from the bottom of the right-rear door and extended to the rear of the car. An $11-\mathrm{in}$. ( $279-\mathrm{mm}$ ) tall by $3 / 4-\mathrm{in}$. ( $19-\mathrm{mm}$ ) deep dent started at the right taillight and extended 26 in . $(660 \mathrm{~mm}$ ) forward.

The left-front door was ajar $3 / 8$ in. $(10 \mathrm{~mm})$ at the top. The left-front tire separated from the wheel. The left headlight partially disengaged, but the cables were still attached. The windshield deformed and shattered due to airbag deployment, not from interaction with the barrier, which can be seen in the high-speed video. Because the windshield shatter was not due to vehicle interaction or direct contact with the barrier system, it was not considered in the test evaluation. The windshield also had a $23-\mathrm{in}$. $(584-\mathrm{mm})$ long tear at the top located 10 in . $(254 \mathrm{~mm})$ from the left A-Pillar also caused by the airbag deployment.

The front bumper separated from the left-front fender and the right-front bumper was torn away 19 in . ( 483 mm ) from the center. The hood had two dents on the front edge, a $2^{1 / 2}-\mathrm{in}$. (64mm ) deep dent and a $13 / 4-\mathrm{in}$. ( $44-\mathrm{mm}$ ) deep dent, located 8 in . ( 203 mm ) and 14 in . ( 356 mm ) right of center, respectively. The hood also had a $7-\mathrm{in}$. $(178-\mathrm{mm})$ long by $1-\mathrm{in}$. $(25-\mathrm{mm})$ deep dent on the underside located 14 in . $(356 \mathrm{~mm})$ right of center at the front edge of the hood. The hood latch had disengaged, and the hood was open.

Table 9. Maximum Occupant Compartment Deformations by Location, Test No. MGSPCB-2

| LOCATION | MAXIMUM <br> DEFORMATION <br> in. (mm) | MASH ALLOWABLE <br> DEFORMATION <br> in. (mm) |
| :---: | :---: | :---: |
| Wheel Well \& Toe Pan | $1.08(28)$ | $\leq 9(229)$ |
| Floor Pan \& Transmission Tunnel | $0.27(7)$ | $\leq 12(305)$ |
| Side Front Panel (in Front of A-Pillar) | $0.82(21)$ | $\leq 12(305)$ |
| Side Door (Above Seat) | $2.83(72)$ | $\leq 9(229)$ |
| Side Door (Below Seat) | $1.70(43)$ | $\leq 12(305)$ |
| Roof | $0.87(22)$ | $\leq 4(102)$ |
| Windshield | N/A | $\leq 3(76)$ |

### 8.6 Occupant Risk

The calculated OIVs and maximum $0.010-\mathrm{sec}$ ORAs in both the longitudinal and lateral directions are shown in Table 10. Note that the OIVs and ORAs were within the suggested limits provided in MASH. The calculated THIV, PHD, and ASI values are also shown in Table 10. The results of the occupant risk analysis, as determined from the accelerometer data, are summarized in Figure 78. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix G.

### 8.7 Discussion

The analysis of the test results for test no. MGSPCB-2 showed that the MGS to PCB transition system adequately contained and redirected the 1100 C vehicle with controlled lateral displacements of the barrier. There were no detached elements nor fragments which showed potential for penetrating the occupant compartment nor presented undue hazard to other traffic. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle did not penetrate nor ride over the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix G, were deemed acceptable, because they did not adversely influence occupant risk safety criteria nor cause rollover. After impact, the vehicle exited the barrier at an angle of 13.6 degrees and its trajectory did not violate the bounds of the exit box. Therefore, test no. MGSPCB2, conducted on the MGS to PCB transition system, was determined to be acceptable according to the MASH safety performance criteria for test designation no. 3-20.

Table 10. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. MGSPCB-2

| Evaluation Criteria |  | Transducer |  | MASH <br> Limits |
| :---: | :---: | :---: | :---: | :---: |
|  |  | SLICE-1 | SLICE-2 |  |
| OIV <br> ft/s (m/s) | Longitudinal | -23.82 (-7.26) | -22.86 (-6.97) | $\pm 40$ (12.2) |
|  | Lateral | -22.38 (-6.82) | -22.03 (-6.71) | $\pm 40$ (12.2) |
| $\begin{gathered} \text { ORA } \\ \text { g's } \end{gathered}$ | Longitudinal | -6.14 | -5.79 | $\pm 20.49$ |
|  | Lateral | -6.85 | -7.20 | $\pm 20.49$ |
| MAX. <br> ANGULAR DISPL. deg. | Roll | -9.62 | -10.49 | $\pm 75$ |
|  | Pitch | -5.92 | -6.46 | $\pm 75$ |
|  | Yaw | -43.56 | -43.68 | not required |
| $\begin{gathered} \text { THIV } \\ \mathrm{ft} / \mathrm{s}(\mathrm{~m} / \mathrm{s}) \end{gathered}$ |  | 29.54 (9.00) | 29.38 (8.95) | not required |
| $\begin{gathered} \text { PHD } \\ \text { g's } \end{gathered}$ |  | 9.01 | 8.86 | not required |
| ASI |  | 1.72 | 1.71 | not required |


0.000 sec
0.048 sec
0.150 sec


## $\begin{array}{llllll}2 & 3 & 5 & 6 & 8 & 8 \\ 10 & 11 \\ 12 & 13 & 14\end{array}$

- Test Agency
- Test Agency
- Test
..MwRSF
..................................................................................................................7/30/2015
- MASH Test Designation $\qquad$
- Test Article. $\qquad$
$\qquad$ MGS to PCB Transition
- Total Length $\qquad$

Mounting Height $\qquad$ 12 ga. $(2.66 \mathrm{~mm})$
$\qquad$ . $31 \mathrm{in} .(787 \mathrm{~mm})$

- Key Component - ASTM 992 Steel Post
Length .
.72 in ( $1,829 \mathrm{~mm}$ ) $2 \mathrm{in}.(1,829 \mathrm{~mm})$

Embedment Depth $\qquad$ Spacing $75 \mathrm{in} .(1,905 \mathrm{~mm})$

- Key Component $-5,000 \mathrm{psi}$ PCB

Length
Width 150 in. $(3,810 \mathrm{~mm})$ Heigh $\qquad$ $22 \frac{1}{2} \mathrm{in} .(572 \mathrm{~mm})$ Heigh $\qquad$ 32 in. $(813 \mathrm{~mm})$

- Soil Type ............................................................................... Coarse Crushed Limestone
- Vehicle Make/Model $\qquad$ 2008 Kia Rio Curb. $\qquad$ $2,434 \mathrm{lb}(1,104 \mathrm{~kg})$ Test Inertial tial. $.2,436 \mathrm{lb}(1,105 \mathrm{~kg})$ .2,601 lb (1,180 kg)
- Impact Conditions
Speed
$65.1 \mathrm{mph}(104.8 \mathrm{~km} / \mathrm{h})$
Angle .
... 24.0 deg

Impact Location
$.991 / 2$ in. $(2,527 \mathrm{~mm})$ U.S. from centerline of $2^{\text {nd }}$ spli................................................................................. from end shoe

- Impact Severity (IS) ............ $57.2 \mathrm{kip}-\mathrm{ft}(77.6 \mathrm{~kJ})>51 \mathrm{kip}-\mathrm{ft}(69.7 \mathrm{~kJ})$ limit from MASH
- Exit Conditions

Speed.
$41.2 \mathrm{mph}(66.3 \mathrm{~km} / \mathrm{h})$
Angle
.................. 13.6 deg

- Exit Box Criterion ......Pass
- Vehicle Stability
- Vehicle Stopping Di........ Lateral.
$\qquad$ hicle Damage. downstream ............................................................. $22 \mathrm{ft}(6.7 \mathrm{~m})$ in fron - Vehicle Damage.............................................................................................. Moderate VDS [16] ..01-RFQ-6 CDC [17]. 1-FRAW-6 Maximum Interior Deformation

0.422 sec
0.232 sec

1-FRAW-6
in. $(72 \mathrm{~mm})$

- Test Article Damage ......................................................................................................................... Moderate
- Maximum Test Article Deflections

Permanent Set .... $25^{7 / 8}$ in. $(657 \mathrm{~mm})$ Dynamic.. $.28 .1 \mathrm{in} .(714 \mathrm{~mm})$ Working Width....................................................................................... 61.4 in. ( $1,560 \mathrm{~mm}$ )

- Transducer Data

| Evaluation Criteria |  | Transducer |  | MASH Limit |
| :---: | :---: | :---: | :---: | :---: |
|  |  | SLICE-1 <br> (primary) | SLICE-2 |  |
| $\begin{aligned} & \mathrm{OIV} \\ & \mathrm{ft} / \mathrm{s} \\ & (\mathrm{~m} / \mathrm{s}) \end{aligned}$ | Longitudinal | -23.82 (-7.26) | -22.86 (-6.97) | $\begin{gathered} \pm 40 \\ (12.2) \\ \hline \end{gathered}$ |
|  | Lateral | -22.38 (-6.82) | -22.03 (-6.71) | $\begin{gathered} \pm 40 \\ (12.2) \\ \hline \end{gathered}$ |
| $\begin{gathered} \text { ORA } \\ \text { g's } \end{gathered}$ | Longitudinal | -6.14 | -5.79 | $\pm 20.49$ |
|  | Lateral | -6.85 | -7.20 | $\pm 20.49$ |
| MAX <br> ANGULAR DISP. deg. | Roll | -9.62 | -10.49 | $\pm 75$ |
|  | Pitch | -5.92 | -6.46 | $\pm 75$ |
|  | Yaw | -43.56 | -43.68 | Not required |
| THIV - ft/s (m/s) |  | 29.54 (9.00) | 29.38 (8.95) | Not required |
| PHD - g's |  | 9.01 | 8.86 | Not required |
| ASI |  | 1.72 | 1.71 | Not required |

Figure 78. Summary of Test Results and Sequential Photographs, Test No. MGSPCB-2


Figure 79. Additional Sequential Photographs, Test No. MGSPCB-2


Figure 80. Additional Sequential Photographs, Test No. MGSPCB-2


Figure 81. Documentary Photographs, Test No. MGSPCB-2


Figure 82. Documentary Photographs, Test No. MGSPCB-2


Figure 83. Impact Location, Test No. MGSPCB-2


Figure 84. Vehicle Final Position, Test No. MGSPCB-2



Figure 86. System Damage Between the End Shoe and Post No. 18, Test No. MGSPCB-2


Figure 87. System Damage at the Transition, Test No. MGSPCB-2



Figure 88. System Damage at the Transition, Test No. MGSPCB-2


[^3]

Figure 90. Vehicle Damage, Test No. MGSPCB-2


Figure 91. Vehicle’s Windshield Damage, Test No. MGSPCB-2



Figure 92. Undercarriage Damage, Test No. MGSPCB-2

## 9 DESIGN DETAILS, TEST NO. MGSPCB-3

The MGS to PCB transition test installation for test no. MGSPCB-3 was nearly identical to that used in test no. MGSPCB-1, but the system was installed with the PCB on the upstream end transitioning to the MGS on the downstream end. The test installation layout is shown in Figure 93. Photographs of the test installation are shown in Figures 94 and 95. Material specifications, mill certifications, and certificates of conformity for the system materials are shown in Appendix A.


Notes: (1) Test shall be performed according to test designation no. 3-21 of MASH criteria.
(2) The impact location is 12 ' 6 " [3810] upstream from the centerline of the end shoe. Centerline of the end shoe is taken as the center reference.
(3) The front edge of the soil pit should be at least 5' [1524] from the center of each post. The distance can be adjusted as long as
4) Critical region is between post nos. 1 through 4 ( $\varnothing 3^{\prime}$ holes).
(5) BCT anchors are placed in $\varnothing 3^{\prime}$ [914] holes, then backfilled and tamped with soil.
(6) Guardrail should be lapped such that upstream guardrail is behind downstream guardrail.


Figure 93. Test Installation Layout, Test No. MGSPCB-3


장


Figure 94. Test Installation, Test No. MGSPCB-3


[^4]

N


Figure 95. Test Installation, Test No. MGSPCB-3

## 10 FULL-SCALE CRASH TEST NO. MGSPCB-3

### 10.1 Static Soil Test

Before full-scale crash test no. MGSPCB-3 was conducted, the strength of the foundation soil was evaluated with a static test, as described in MASH. The static test results, as shown in Appendix C, demonstrated a soil resistance above the baseline test limits. Thus, the soil provided adequate strength, and full-scale crash testing could be conducted on the barrier system.

### 10.2 Weather Conditions

Test no. MGSPCB-3was conducted on August 25, 2015 at approximately 12:00 p.m. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/LNK) were reported and are shown in Table 11.

Table 11. Weather Conditions, Test No. MGSPCB-3

| Temperature | $76^{\circ} \mathrm{F}$ |
| :--- | :--- |
| Humidity | $48 \%$ |
| Wind Speed | 7 mph |
| Wind Direction | $130^{\circ}$ from True North |
| Sky Conditions | Sunny |
| Visibility | 10 Statute Miles |
| Pavement Surface | Dry |
| Previous 3-Day Precipitation | 0.01 in. |
| Previous 7-Day Precipitation | 0.45 in. |

### 10.3 Test Description

The 5,012-lb ( $2,273-\mathrm{kg}$ ) pickup truck impacted the MGS to PCB transition at a speed of 63.1 $\mathrm{mph}(101.5 \mathrm{~km} / \mathrm{h})$ and at an angle of 24.6 degrees. Initial vehicle impact was to occur $12 \mathrm{ft}-6$ in. ( 3.8 m ) upstream from the centerline of the end shoe, as shown in Figure 101, which was selected using LS-DYNA analysis to maximize potential for vehicle instability and capture issues. The actual point of impact was approximately 3 in . 76 mm ) upstream from the intended impact point. A sequential description from the impact events is contained in Table 12. A summary of the test results and sequential photographs are shown in Figure 96. Additional sequential photographs are shown in Figures 97 and 98. Documentary photographs of the crash test are shown in Figures 99 and 100. The transition blockouts are numbered C 1 through C 4 , from downstream to upstream. The vehicle came to rest $187 \mathrm{ft}-9 \mathrm{in}$. ( 57.2 m ) downstream of impact and $56 \mathrm{ft}-10 \mathrm{in}$. $(17.3 \mathrm{~m}$ ) behind the barrier oriented with the front of the vehicle facing away from the back side of the barrier. The vehicle trajectory and final position are shown in

Figures 96 and 102.

Table 12. Sequential Description of Impact Events, Test No. MGSPCB-3

| $\begin{aligned} & \text { TIME } \\ & (\mathrm{sec}) \\ & \hline \end{aligned}$ | EVENT |
| :---: | :---: |
| 0.000 | Vehicle's right-front tire impacted concrete barrier no. 7 approximately $12 \mathrm{ft}-9$ in. ( 3.9 m ) upstream from centerline of end shoe. |
| 0.002 | Vehicle's right-front bumper contacted concrete barrier no. 7. |
| 0.010 | Vehicle's right headlight contacted concrete barrier no. 7 and deformed, and vehicle's right fender contacted concrete barrier no. 7 and deformed. |
| 0.014 | Concrete barrier no. 7 rotated clockwise and vehicle's right-front tire lost contact with ground and rode up barrier. |
| 0.020 | Vehicle's right fender overrode the barrier. |
| 0.024 | Vehicle's right-front door deformed, and concrete barrier no. 8 rotated counterclockwise. |
| 0.032 | Vehicle's hood deformed. |
| 0.042 | Vehicle's right-rear door deformed and concrete barrier no. 8 rolled backward. |
| 0.044 | Vehicle rolled toward barrier and yawed away from barrier, concrete barrier no. 9 rotated clockwise, and vehicle's left taillight deformed. |
| 0.056 | Blockout C3 rotated backward. |
| 0.060 | Concrete barrier no. 6 rotated counterclockwise and blockout C 2 rotated backward. |
| 0.066 | Concrete barrier no. 9 rolled backward. |
| 0.074 | Vehicle pitched upward. |
| 0.080 | Concrete barrier no. 5 deflected downstream, and blockout C1 rotated counterclockwise. |
| 0.086 | Blockout C1 deflected backward, concrete portion disengaged from backside of upstream end of concrete barrier no. 8, and post no. 3 rotated counterclockwise. |
| 0.090 | Concrete barrier no. 7 rolled backward, concrete barrier no. 5 deflected backward, and vehicle's right-front window shattered. |
| 0.098 | Blockout C2 deflected backward. |
| 0.100 | Concrete barrier no. 4 deflected downstream. |
| 0.120 | Blockout C2 rotated clockwise, concrete barrier no. 6 rolled backward, concrete barrier no. 10 rotated clockwise, concrete barrier no. 11 deflected upstream, and vehicle's left-front tire became airborne. |
| 0.126 | Vehicle's front bumper contacted end shoe bracket, and concrete barrier no. 10 rolled backward. |
| 0.132 | Vehicle's left-rear tire became airborne, and concrete barrier no. 6 rotated clockwise. |
| 0.138 | Concrete barrier no. 2 deflected downstream. |
| 0.144 | Vehicle's right headlight detached, and vehicle's right fender contacted end shoe bracket. |
| 0.154 | Blockout C4 rotated clockwise. |
| 0.186 | Concrete barrier no. 8 rolled backward. |


| 0.190 | Vehicle's left rear tire became airborne. |
| :--- | :--- |
| 0.192 | Vehicle was parallel to system at a speed of $52.7 \mathrm{mph}(84.8 \mathrm{~km} / \mathrm{h})$. |
| 0.224 | Vehicle's tailgate deformed, vehicle's right quarter panel contacted concrete <br> barrier no. 8, and vehicle's right taillight contacted concrete barrier no. 8 and <br> deformed. |
| 0.228 | Concrete barrier no. 11 deflected downstream, and vehicle's right taillight <br> shattered. |
| 0.230 | Vehicle pitched downward, and concrete barrier nos. 9 and 10 rolled toward <br> traffic side of system. |
| 0.234 | Vehicle's left-front door deformed. |
| 0.246 | Concrete barrier no. 7 rolled backward, and vehicle's right-front tire regained <br> contact with ground. |
| 0.332 | Concrete barrier no. 7 rolled backward. |
| 0.358 | Concrete barrier no. 8 rolled backward. |
| 0.380 | Vehicle's left taillight detached. |
| 0.396 | Post no. 1 deflected backward. |
| 0.474 | Vehicle's right-front tire detached. |
| 0.544 | Concrete barrier no. 8 rolled toward traffic side of system. |
| 0.604 | Vehicle's right taillight detached. |
| 0.606 | Vehicle exited system at a speed of 43.2 mph (69.5 km/h) and at an angle of 11.3 <br> degrees. |
| 0.612 | Concrete barrier no. 7 rolled toward traffic side of system. |
| 0.636 | Vehicle rolled away from barrier. |
| 0.654 | Vehicle pitched upward. |
| 0.824 | Upstream side of post no. 2 was contacted by disengaged component of right- <br> front rim. |
| 1.012 | Vehicle yawed toward barrier. |
| 1.240 | Vehicle pitched downward. |
| 2.442 | Vehicle re-contacted rail at post no. 18. |

### 10.4 Barrier Damage

Damage to the barrier was moderate, as shown in Figures 103 through 106. Barrier damage consisted of cracking of the concrete, contact marks on the front and top face of the concrete segments, and spalling of the concrete. The length of vehicle contact along the barrier was approximately $38 \mathrm{ft}-8 \mathrm{in}$. ( 11.8 m ), which spanned from 36 in . ( 914 mm ) upstream of the target impact point to blockout C 1 .

Concrete barrier no. 7 had vertical cracking along the impact side face extending from the bottom to the top, located $123 / 4 \mathrm{in}$. ( 324 mm ), $11 \frac{1}{2} \mathrm{in}$. ( 292 mm ), and 20 in . ( 508 mm ) downstream of the midspan of the segment. The backside of the barrier had hairline cracks located at the same
distances as the cracks on the front side. Tire contact marks started on the front toe 50 in . $(1,270$ mm ) upstream of the downstream end of concrete barrier no. 7. Vehicle contact continued upward and downstream to the end of the concrete barrier. Contact marks on top of the barrier started $191 / 2$ in. ( 495 mm ) upstream from the downstream end and extended 3 in . 76 mm ) backward from the front edge. The downstream impact side corner of the barrier had a $51 / 2-\mathrm{in}$. ( $140-\mathrm{mm}$ ) vertical by $11 / 2-\mathrm{in}$. ( $38-\mathrm{mm}$ ) lateral by $1-\mathrm{in}$. ( $25-\mathrm{mm}$ ) long spall located 16 in . ( 406 mm ) from the bottom.

Concrete barrier no. 8 had a 14 -in. ( $356-\mathrm{mm}$ ) vertical by $2 \frac{1}{2}-\mathrm{in}$. ( $64-\mathrm{mm}$ ) lateral by 7 -in. $(178-\mathrm{mm})$ long spall and a $14-\mathrm{in}$. $(356-\mathrm{mm})$ vertical by $3-\mathrm{in}$. $(76-\mathrm{mm}$ ) lateral by $51 / 4-\mathrm{in}$. ( $133-\mathrm{mm}$ ) long spall, located on the front and backside of the upstream corner of the barrier, respectively, which exposed the internal reinforcement loops. Contact marks on the top of the barrier extended through the entire barrier and contact marks on the front face extended to the guardrail end shoe. A crack extended from the impact side toe up and over the barrier to the backside toe 8 in. (203 mm ) upstream of center. Two cracks on the back face, located 11 in . ( 279 mm ) upstream from center and $15 \mathrm{in} .(381 \mathrm{~mm})$ downstream from center, extended from the toe upward 18 in . ( 457 mm ).

Concrete barrier no. 9 had vehicle contact marks on the top of the barrier and a hairline crack on the impact side face extending from the toe to the top and located 12 in . ( 305 mm ) upstream of center. Concrete barrier no. 10 had 8 in . ( 203 mm ) of wheel contact on the lower sloped face on the upstream end.

The end shoe mounting bracket had a $21-\mathrm{in}$. ( $533-\mathrm{mm}$ ) long piece of metal from the vehicle wedged beneath the leading edge of the bracket. The end shoe mounting bracket had scuff marks on the front face of the ramp and the shoe was displaced $1 / 8 \mathrm{in}$. ( 3 mm ) downstream. The overall damage to the end shoe mounting bracket was minimal. The end shoe buckled 12 in . ( 305 mm ) on the top and bottom corrugation starting $31 / 2 \mathrm{in}$. ( 89 mm ) from the upstream end. The guardrail had a $3 / 8-\mathrm{in}$. ( $10-\mathrm{mm}$ ) long gouge on the bottom corrugation at blockout C 4 and a $2-\mathrm{in}$. ( $51-\mathrm{mm}$ ) long gouge located 13 in . ( 330 mm ) downstream of blockout C 4 on the bottom corrugation. Blockout C4 had a vertical crack through the entire length and located $41 / 2 \mathrm{in}$. ( 114 mm ) from the upstream end.

The rail buckled at the top edge at $2^{1 / 2}$ in. ( 64 mm ) downstream from the upstream end of blockout C3 and on the bottom edge at $1 / 2 \mathrm{in}$. ( 13 mm ) downstream from the upstream end of blockout C3. Blockout C3 had a 2-in. (51-mm) long vertical crack on the upstream face extending from the top to the bottom and a gouge in the top upstream-front corner from the guardrail. Blockout C2 rotated downstream and the guardrail gouged into the top and bottom upstream-front corners of the blockout. Blockout C1 rotated downstream and had vehicle contact marks on the top edge.

The guardrail gouged into blockout no. 1. The front upstream flange of post no. 2 had a $1 / 4$ in. ( $6-\mathrm{mm}$ ) dent which was located $141 / 2 \mathrm{in}$. ( 368 mm ) from the ground. The vehicle exited the system and then impacted again at the downstream end anchorage, post no. 18. Contact marks began $341 / 2 \mathrm{in}$. ( 876 mm ) upstream of post no. 18 through the end of the guardrail. The guardrail had a $3-\mathrm{in}$. $(76-\mathrm{mm})$ tall x $3-\mathrm{in}$. $(76-\mathrm{mm}$ ) deep buckle in the valley which was 2 in . ( 51 mm ) downstream of the bolt in post no. 18 and the free end deflected backward $31 / 2 \mathrm{in}$. ( 89 mm ).

The maximum permanent set of the rail, posts, and concrete barriers for the system was $301 / 2 \mathrm{in}$. ( 775 mm ) at the rail at blockout C4, $1 / 4 \mathrm{in}$. ( 6 mm ) at post no. 3 , and $343 / 8 \mathrm{in}$. ( 873 mm ) at the upstream target on concrete barrier no. 8 , as measured in the field. The maximum lateral dynamic deflection of the rail, posts, and concrete barriers for the system was 30.6 in . ( 777 mm ) at the rail at blockout C3, 0.4 in . ( 10 mm ) at post no. 2, and $37.2 \mathrm{in} .(945 \mathrm{~mm}$ ) at the middle target on concrete barrier no. 8 , as determined from high-speed digital video analysis. The working width of the system was found to be 58.7 in . ( $1,491 \mathrm{~mm}$ ), also determined from high-speed digital video analysis.

### 10.5 Vehicle Damage

The damage to the vehicle was moderate, as shown in Figures 107 through 109. The maximum occupant compartment deformations are listed in Table 13 along with the deformation limits established in MASH for various areas of the occupant compartment. Note that none of the MASH established deformation limits were violated. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix D.

Table 13. Maximum Occupant Compartment Deformations by Location, Test No. MGSPCB-3

| LOCATION | MAXIMUM <br> DEFORMATION <br> in. (mm) | MASH ALLOWABLE <br> DEFORMATION <br> in. (mm) |
| :---: | :---: | :---: |
| Wheel Well \& Toe Pan | $0.31(8)$ | $\leq 9(229)$ |
| Floor Pan \& Transmission Tunnel | $0.14(4)$ | $\leq 12(305)$ |
| Side Front Panel (in Front of A-Pillar) | $0.20(5)$ | $\leq 12(305)$ |
| Side Door (Above Seat) | $0.53(14)$ | $\leq 9(229)$ |
| Side Door (Below Seat) | $0.50(13)$ | $\leq 12(305)$ |
| Roof | $0.12(3)$ | $\leq 4(102)$ |
| Windshield | 0 | $\leq 3(76)$ |

The majority of the damage was concentrated on the right-front corner and right side of the vehicle where the impact occurred. The right-front bumper had denting and buckling starting on the right end and extending 23 in . ( 584 mm ) toward the center. The right-front headlight disengaged.

The front one-third of the right-front wheel well disengaged, the front wheel assembly disengaged at the wheel bearing, and the right-front brake caliper disengaged. A $312-\mathrm{in}$. ( $89-\mathrm{mm}$ ) by $1-\mathrm{in} .(25-\mathrm{mm})$ puncture was located at the rear of the right-front wheel well and 3 in . 76 mm ) from the bottom. The right fender was bent upward 9 in . ( 229 mm ) from the top edge of the wheel well, starting at the back of the fender and extending 20 in . 508 mm ) forward.

The front of the right-front door had a $11 / 2-\mathrm{in}$. $(38-\mathrm{mm})$ gap at the top, and the rear of the right-front door was separated 1 in . $(25 \mathrm{~mm}$ ). The front of the right-front door had a $23-\mathrm{in}$. (584mm ) wide tear that was 15 in . ( 381 mm ) across at the top, $11 \mathrm{in} .(279 \mathrm{~mm}$ ) across at the bottom,
and began at the bottom of the frame. Contact marks started 18 in . ( 457 mm ) from the bottom of the right-front door and extended to the right-rear wheel well. The right-rear door had a $81 / 2-\mathrm{in}$. ( $216-\mathrm{mm}$ ) long by $3-\mathrm{in}$. $(76-\mathrm{mm}$ ) tall tear located 17 in . $(432 \mathrm{~mm}$ ) from the bottom and $5-\mathrm{in}$. (127$\mathrm{mm})$ tall by $2-\mathrm{in}$. ( $51-\mathrm{mm}$ ) deep denting and gouging across the entire length. The back of the right-rear door had a $3 / 4-\mathrm{in}$. $(19-\mathrm{mm})$ gap at the top. The tears in the door were to the exterior sheet metal only and did not compromise the occupant compartment.

A 1-in. (25-mm) deep by 11-in. (279-mm) tall dent started 18 in . ( 457 mm ) from the bottom of the right C-Pillar. Contact marks on the right quarter panel were located 21 in . ( 533 mm ) from the bottom and $22 \mathrm{in} .(559 \mathrm{~mm})$ from the C-Pillar. The right quarter panel had a $1-\mathrm{in} .(25-\mathrm{mm})$ deep dent extending from the C-Pillar to the wheel well, and a $1 / 2-\mathrm{in}$. ( $13-\mathrm{mm}$ ) long by $1-\mathrm{in}$. ( $25-$ mm ) tall tear located 4 in . ( 102 mm ) left of the C-Pillar.

The right-rear tire deflated due to a $2-\mathrm{in}$. ( $51-\mathrm{mm}$ ) tear located 3 in . ( 76 mm ) from the wheel rim. The rim also had a $5-\mathrm{in}$. $(127-\mathrm{mm})$ long crack on the edge. The outer lip was gouged around three-quarters of the circumference. A $11 / 2-\mathrm{in}$. $(38-\mathrm{mm})$ by $1-\mathrm{in}$. $(25-\mathrm{mm})$ dent was located at the back of the right-rear wheel well and $11 \mathrm{in} .(279 \mathrm{~mm})$ from the bottom. The right quarter panel had a $17-\mathrm{in}$. ( $432-\mathrm{mm}$ ) tall by $1-\mathrm{in}$. ( $25-\mathrm{mm}$ ) deep dent located near the rear of the vehicle and scraping 10 in . $(254 \mathrm{~mm})$ from the bottom starting at the rear of the right-rear wheel well and extending back.

The right taillight disengaged, and the right side of the rear bumper had a $1-\mathrm{in}$. $(25-\mathrm{mm})$ deep dent. The left side of the tailgate disengaged, and the lower left corner of the tailgate was bent $1 / 8 \mathrm{in}$. ( 3 mm ). The left taillight disengaged.

The front of the left-front door had a $1 / 2$-in. (13-mm) gap. The windshield had minor cracking starting 4 in . $(102 \mathrm{~mm})$ right of the lower-left corner of the windshield and extended 21 in. $(533 \mathrm{~mm}$ ) upward. The front of the hood had a $11 / 2-\mathrm{in}$. ( $38-\mathrm{mm}$ ) gap and was separated $1 / 2 \mathrm{in}$. $(13 \mathrm{~mm})$ on the left side. The top edge of the bumper buckled $13 \mathrm{in} .(330 \mathrm{~mm})$ left of center. The lower bumper was bent back $191 / 2 \mathrm{in}$. ( 495 mm ) from center. The right side of the grill cracked $41 / 2$ in. (114 mm) from the top.

### 10.6 Occupant Risk

The calculated OIVs and maximum $0.010-\mathrm{sec}$ ORAs in both the longitudinal and lateral directions are shown in Table 14. Note that the OIVs and ORAs were within the suggested limits provided in MASH. The calculated THIV, PHD, and ASI values are also shown in Table 14. The results of the occupant risk analysis, as determined from the accelerometer data, are summarized in Figure 96. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix H .

### 10.7 Discussion

The analysis of the test results for test no. MGSPCB-3 showed that the MGS to PCB transition system adequately contained and redirected the 2270P vehicle with controlled lateral displacements of the barrier. There were no detached elements nor fragments which showed potential for penetrating the occupant compartment nor presented undue hazard to other traffic. Deformations of, or intrusions into, the occupant compartment that could have caused serious
injury did not occur. The test vehicle did not penetrate nor ride over the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix H, were deemed acceptable, because they did not adversely influence occupant risk safety criteria nor cause rollover. After impact, the vehicle exited the barrier at an angle of 11.3 degrees and its trajectory did not violate the bounds of the exit box. Therefore, test no. MGSPCB3, conducted on the MGS to PCB transition system, was determined to be acceptable according to the MASH safety performance criteria for test designation no. 3-21.

Table 14. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. MGSPCB-3

| Evaluation Criteria |  | Transducer |  | MASH <br> Limits |
| :---: | :---: | :---: | :---: | :---: |
|  |  | SLICE-1 | SLICE-2 |  |
| $\begin{aligned} & \text { OIV } \\ & \text { ft/s (m/s) } \end{aligned}$ | Longitudinal | -11.26 (-3.43) | -11.59 (-3.53) | $\pm 40$ (12.2) |
|  | Lateral | -19.27 (-5.87) | -17.94 (-5.47) | $\pm 40$ (12.2) |
| $\begin{gathered} \text { ORA } \\ \text { g's } \end{gathered}$ | Longitudinal | -14.02 | -14.09 | $\pm 20.49$ |
|  | Lateral | -13.35 | -15.18 | $\pm 20.49$ |
| MAX. <br> ANGULAR DISPL. deg. | Roll | 33.23 | 30.55 | $\pm 75$ |
|  | Pitch | -10.60 | -11.10 | $\pm 75$ |
|  | Yaw | -42.23 | -41.75 | not required |
| $\begin{gathered} \text { THIV } \\ \text { ft/s }(\mathrm{m} / \mathrm{s}) \end{gathered}$ |  | 22.84 (6.96) | 21.85 (6.66) | not required |
| $\begin{gathered} \text { PHD } \\ \text { g's } \end{gathered}$ |  | 14.29 | 15.40 | not required |
| ASI |  | 1.01 | 1.03 | not required |


0.186 sec
0.544 sec
0.774 sec
0.092 sec


- Test Number .MGSPCB-3
- Date.
- MASH Test Designation $\qquad$ 25/2015
- Test Article th MGS to PCB Transition
- Key Component - W-beam Guardrail

Thickness. $\qquad$ 12 ga. ( 2.66 mm )
Mounting Height
ASTM 992 Stee...........................

- Key Component - ASTM 992 Steel Post

Length.
72 in. $(1,829 \mathrm{~mm})$
Embedment Depth 40 in. ( $1,016 \mathrm{~mm}$ ) Spacing. $\qquad$ $75 \mathrm{in} .(1,905 \mathrm{~mm})$

- Key Component $-5,000 \mathrm{psi}$ PCB

Length $\qquad$ $150 \mathrm{in} .(3,810 \mathrm{~mm})$
Width.. $\qquad$ $22^{1 / 2} \mathrm{in} .(572 \mathrm{~mm})$ Height. $\qquad$ $32 \mathrm{in}.(813 \mathrm{~mm})$

- Soil Type ............................................................................ Coarse Crushed Limestone
- Vehicle Make /Model................................................................... 2008 Dodge Ram 1500

Curb. $\qquad$ $5,017 \mathrm{lb}(2,276 \mathrm{~kg})$
Test Inertial. $5,012 \mathrm{lb}(2,273 \mathrm{~kg})$ Gross Static.
$. .5,177 \mathrm{lb}(2,348 \mathrm{~kg})$

- Impact Conditions

Speed .......................................................................................... $63.1 \mathrm{mph}(101.5 \mathrm{~km} / \mathrm{h})$
Angle .......................................................................................................... 24.6 deg
Impact Location. approximately $12 \mathrm{ft}-9 \mathrm{in}$. ( 3.9 m ) US from centerline of end shoe

- Impact Severity (IS) ....... 115.6 kip-ft $(156.7 \mathrm{~kJ})>106 \mathrm{kip}-\mathrm{ft}(144 \mathrm{~kJ})$ limit from MASH
- Exit Conditions

Speed ....................................................................................... $43.2 \mathrm{mph}(69.5 \mathrm{~km} / \mathrm{h})$ Angle ................... 11.3 deg

- Exit Box Criterion $\qquad$ .......Pass
- Vehicle Stability. .. Satisfactory
- Vehicle Stopping Distance $\qquad$ $187 \mathrm{ft}-9$ in. ( 57.2 m ) downstream Lateral $.56 \mathrm{ft}-10 \mathrm{in} .(17.3 \mathrm{~m})$ behind


| Vehicle Damage | Moderate |
| :---: | :---: |
| VDS [16] | 01-RFQ-5 |
| CDC [17]. | 01-RYEW-3 |
| Maximum Interior Deformatio | $0.532 \mathrm{in} .(13 \mathrm{~mm}$ ) |
| Test Article Damage | Moderate |
| - Maximum Test Article Deflections |  |
| Permanent Set | $343 / 8$ in. (873 mm) |
| Dynamic. | 37.2 in. (945 mm) |
| Working Width | $58.7 \mathrm{in}.(1,491 \mathrm{~mm})$ |

- Transducer Data

| Evaluation Criteria |  | Transducer |  | MASH Limit |
| :---: | :---: | :---: | :---: | :---: |
|  |  | SLICE-1 | SLICE-2 <br> (primary) |  |
| $\begin{gathered} \text { OIV } \\ \mathrm{ft} / \mathrm{s} \\ (\mathrm{~m} / \mathrm{s}) \end{gathered}$ | Longitudinal | -11.26 (-3.43) | -11.59 (-3.53) | $\begin{gathered} \pm 40 \\ (12.2) \end{gathered}$ |
|  | Lateral | -19.27 (-5.87) | -17.94 (-5.47) | $\begin{gathered} \pm 40 \\ (12.2) \\ \hline \end{gathered}$ |
| $\begin{gathered} \text { ORA } \\ \text { g's } \end{gathered}$ | Longitudinal | -14.02 | -14.09 | $\pm 20.49$ |
|  | Lateral | -13.35 | -15.18 | $\pm 20.49$ |
| MAX <br> ANGULAR DISP. deg. | Roll | 33.23 | 30.55 | $\pm 75$ |
|  | Pitch | -10.60 | -11.10 | $\pm 75$ |
|  | Yaw | -42.23 | -41.75 | not required |
| THIV - ft/s (m/s) |  | 22.84 (6.96) | 21.85 (6.66) | not required |
| PHD - g's |  | 14.29 | 15.40 | not required |
| ASI |  | 1.01 | 1.03 | not required |

Figure 96. Summary of Test Results and Sequential Photographs, Test No. MGSPCB-3


Figure 97. Additional Sequential Photographs, Test No. MGSPCB-3


Figure 98. Additional Sequential Photographs, Test No. MGSPCB-3


Figure 99. Documentary Photographs, Test No. MGSPCB-3


Figure 100. Documentary Photographs, Test No. MGSPCB-3


Figure 101. Impact Location, Test No. MGSPCB-3


Figure 102. Vehicle Final Position, Test No. MGSPCB-3


Figure 103. System Damage, Test No. MGSPCB-3




Figure 105. Backside Concrete Barrier Damage Between Concrete Barrier Nos. 7 and 8, Test No. MGSPCB-3



古


Figure 107. Vehicle Damage, Test No. MGSPCB-3


Figure 108. Windshield Damage and Occupant Compartment Deformation, Test No. MGSPCB-3


Figure 109. Undercarriage Damage, Test No. MGSPCB-3

## 11 SUMMARY AND CONCLUSIONS

The objective of the research project was to evaluate the safety performance of a transition between guardrail and PCB, specifically the MGS and a free-standing, F-shape PCB. The guardrail to PCB transition design was developed during Phase I of this research effort and evaluation of the design was completed through the full-scale testing detailed herein. The Phase I research effort developed a transition system comprised of a tangent, nested-MGS that overlapped an adjacent, flared PCB system The barrier was subjected to three full-scale crash tests and evaluated according to TL-3 impact safety standards provided in MASH. The safety performance criteria are summarized in Table 15.

Prior to evaluation of the transition design, attachments between the end of the W-beam and the W-beam guardrail that overlapped the PCB segments to the PCBs were developed. These connections were developed to be relatively easy to install, crashworthy, and reusable after a worst case impact on the transition. To this end, a special W-beam end shoe mounting bracket and blockout mounting bracket were developed and implemented into the design.

Test no. MGSPCB-1 was conducted on the MGS to PCB transition with the 2270P vehicle to evaluate the structural integrity of the transition and the potential for vehicle snag. During test no. MGSPCB-1, a 4,914-lb (2,229-kg) pickup truck impacted the system at an angle of 25.3 degrees and a speed of $63.2 \mathrm{mph}(101.8 \mathrm{~km} / \mathrm{h})$, which resulted in an impact severity of 119.6 kip $\mathrm{ft}(162.2 \mathrm{~kJ})$. The vehicle was safely contained and redirected, and all occupant risk values were within MASH limits, so test no. MGSPCB-1 passed the safety criteria of MASH test designation no. 3-21.

Test no. MGSPCB-2 was conducted on the MGS to PCB transition with the 1100 C vehicle to evaluate the potential for vehicle snag, vehicle instability, and combined loading of the guardrail splice. During test no. MGSPCB-2, a $2,436-\mathrm{lb}(1,105-\mathrm{kg})$ small car impacted the system at an angle of 24.0 degrees and a speed of $65.1 \mathrm{mph}(104.8 \mathrm{~km} / \mathrm{h})$, which resulted in an impact severity of 57.2 kip- $\mathrm{ft}(77.6 \mathrm{~kJ})$. The vehicle was safely contained and redirected, and all occupant risk values were within MASH limits, so test no. MGSPCB-2 passed the safety criteria of MASH test designation no. 3-20.

Test no. MGSPCB-3 was conducted in the reverse direction on the MGS to PCB transition with the 2270 P vehicle to evaluate the vehicle capture and the potential for vehicle instability. During test no. MGSPCB-3, a 5,012-lb (2,273-kg) pickup truck impacted the system at an angle of 24.6 degrees and a speed of $63.1 \mathrm{mph}(101.5 \mathrm{~km} / \mathrm{h})$, which resulted in an impact severity of 115.6 kip-ft ( 156.7 kJ ). The vehicle was safely contained and redirected, and all occupant risk values were within MASH limits, so test no. MGSPCB-3 passed the safety criteria of MASH test designation no. 3-21.

The successfully-evaluated MASH TL-3 transition between the MGS and F-shape PCBs provides State DOTs with the first crashworthy transition between these two common, nonproprietary barrier systems. The transition design should be easy to implement as it does not require any unique barrier sections or alterations of the guardrail and PCBs other than two simple connection pieces. Additional recommendations for implementation of the barrier system are given in the subsequent chapter.

Table 15. Summary of Safety Performance Evaluation Results


S - Satisfactory
U - Unsatisfactory NA - Not Applicable

## 12 RECOMMENDATIONS

The guardrail to PCB transition system developed, tested, and evaluated herein has been considered for implementation with guidance and recommendations provided below. For the guardrail to PCB transition, implementation guidance includes minimum installation parameters, allowable tolerances on blockout geometry and placement, grading and surfacing requirements, repair recommendations, and integration with other barrier systems.

### 12.1 Minimum Installation Requirements

The transition system detailed herein was comprised of a tangent, nested-MGS that overlapped an adjacent, flared PCB system. Based on the simulation analysis of the system and the full-scale crash testing, the recommended minimum system configuration are noted below:

1. Use a minimum $137.5-\mathrm{ft}$ (41.91-m) long MGS and an eleven segment PCB system at a $15 \mathrm{H}: 1 \mathrm{~V}$ flare. A minimum of eight PCBs should be placed downstream from, the point where the W-beam guardrail attaches to the PCBs. Potential shorter lengths for either barrier would need to be further evaluated.
2. The transition requires a minimum of three PCB segments extending behind the nested MGS at the $15 \mathrm{H}: 1 \mathrm{~V}$ flare. Thus, the end of the guardrail attaches to the upstream end of the fourth PCB segment. Additional length of PCBs flared behind the MGS would not be an issue as the potential for vehicle and barrier interaction with the PCBs is maximized for the minimum overlap condition.
3. In order to provide adequate anchorage of the end shoe mounting bracket to the PCB, the anchor bracket mounting bolts that extend through the PCB must be mounted to a minimum segment overlap length of $12 \frac{1}{4} \mathrm{in}$. ( 311 mm ) onto the upstream end of the PCB. This select ion ensures that the mounting bolts are inside the first two shear stirrups in the PCB segment in order to provide adequate anchorage for the bracket. Placement of the bracket closer to the barrier edge may reduce the anchorage of the W-beam guardrail.
4. A minimum of five $12-\mathrm{ft} 6$-in. ( $3,810 \mathrm{~mm}$ ) long, nested W -beam sections must be utilized upstream from the end shoe connection to the PCB. For the minimum PCB overlap noted above, this corresponds to one complete $12.5-\mathrm{ft}(3.81-\mathrm{m})$ long section of nested rail upstream from the end of the PCBs.
5. In order to create the work zone, the $15 \mathrm{H}: 1 \mathrm{~V}$ flare used in the transition to offset PCBs behind the guardrail will likely convert to PCBs tangent to the roadway once the workzone area has been established. In order to maintain the safety performance of the as-tested transition, it is recommended that conversion from the $15 \mathrm{H}: 1 \mathrm{~V}$ flare to tangent to the roadway not begin until a minimum of two PCB segments have been installed downstream from the W-beam end shoe connection.

### 12.2 Blockout Placement and Tolerances

Placement of the blockout holders on the PCBs in actual field installations may be difficult to accomplish due to difficulties with alignment of the barriers, construction tolerances, and
interference with PCB reinforcement. Thus, some placement tolerance for the blockout holder should exist to account for these difficulties. The blockout holder and the guardrail have slotted holes that allow for some installation tolerance, and the blockout holders only require two diagonally-placed anchors to account for installation tolerance issues. Additionally, it is believed that minor variations in the placement of the blockout holder will have no adverse effect on the system. Thus, it is recommended that the blockout holder can have a longitudinal tolerance of $\pm 1$ in. $(25 \mathrm{~mm})$. Similar vertical tolerance is acceptable as long as the post bolt can still be attached to the rail without modification of the hardware.

### 12.3 Grading and Surfacing

As with most longitudinal barrier systems, the transition detailed herein was tested and evaluated on level terrain. Typically, it has been acceptable to allow installations of longitudinal barriers and transitions on cross slopes of $10 \mathrm{H}: 1 \mathrm{~V}$ or flatter based on guidance in the AASHTO Roadside Design Guide [18]. Thus, 10H:1V or flatter cross slopes are recommended in front of the transition system.

Additionally, steep slopes are a common hazard behind barrier systems. However, these slope conditions can affect the performance of strong-post guardrail by altering post-soil interaction forces and may also affect PCB function due to the barriers traversing the steep slope as they deflect laterally. Previous guidance for the standard MGS installed adjacent to steep slopes has recommended a minimum of $2 \mathrm{ft}(610 \mathrm{~mm})$ of level terrain or $10 \mathrm{H}: 1 \mathrm{~V}$ or flatter cross slope behind the guardrail posts in order to provide similar performance to the system when installed on level terrain. As such, a $2-\mathrm{ft}(610-\mathrm{mm}$ ) wide segment of level terrain, or $10 \mathrm{H}: 1 \mathrm{~V}$ or flatter cross slope, would be recommended for the MGS portion of the guardrail to PCB transition system detailed herein.

As noted previously, installation of PCB segments on a soil foundation is typically not recommended due to potential concerns for the back edge of the PCB segment to dig into the soil, thus leading to increased barrier rotation and potential vehicle instabilities. Thus, a wellcompacted, crushed limestone base is recommended beneath the PCBs placed behind the MGS and supported on soil. The compacted crushed limestone material must meet AASHTO Grade B soil specifications and should be installed to a depth of 6 in . ( 152 mm ). The compacted base should be placed underneath all PCB segments in the transition not installed on a paved road surface and its dimensions should extend for $1 \mathrm{ft}(305 \mathrm{~mm})$ in front of the barrier segments, underneath the barrier segments, and for a minimum lateral width of $4 \mathrm{ft}(1,219 \mathrm{~mm})$ behind the barrier segments. The compacted base should also be installed at a $10 \mathrm{~V}: 1 \mathrm{H}$ or flatter cross slope.

Portable concrete barriers have similar concerns with placement adjacent to slopes based on the desire to retain deflected barriers on level terrain rather than having the segments deflect down a steep slope. Based on the $37.2-\mathrm{in}$. ( $945-\mathrm{mm}$ ) maximum dynamic deflection of the PCBs observed in the three crash tests conducted herein and the need for $4 \mathrm{ft}(1,219 \mathrm{~mm})$ of compacted base behind the barrier segments, it is recommended that a minimum of $4 \mathrm{ft}(1,219 \mathrm{~mm})$ of $10 \mathrm{~V}: 1 \mathrm{H}$ or flatter cross slope grading be provided behind the PCB segments in the transition.

### 12.4 Repair Recommendations

Currently, most state DOTs have guidance regarding the level of damage to guardrail and/or PCB systems that would and require repair or replacement. The transition system developed in this study uses these two types of barrier systems. Thus, state DOTs should follow their current standard guidance for repair and replacement of damaged PCB and MGS components.

The only non-standard components in the transition system were the mounting brackets for the W-beam end shoe and the blockouts. During full-scale testing of the transition, none of these components nor their anchorages were damaged, and they were reusable from test to test. Thus, it is unlikely these components will require replacement during their normal service life. However, these components should be replaced if any of the follow damage is observed:

1. Displacement or permanent deformation of either the end shoe or blockout mounting brackets greater than $1 / 2$ in. ( 13 mm ) from their nominal dimensions
2. Tearing or fracture of the bracket's base material or any welds
3. Anchor bracket damage or disengagement. For the end shoe bracket, it may only require installation of new mounting bolts if the bracket is undamaged. The blockout mounting bracket could be replaced using the two unused anchor holes if one of the anchors is damaged or becomes disengaged.

### 12.5 Integration with Other Barrier Systems

The guardrail to PCB transition system developed herein focused on the MGS guardrail system and the $12.5-\mathrm{ft}(3.81-\mathrm{m})$ long, F-shape PCBs that were developed through the Midwest States Pooled Fund Program. While the transition was designed specifically for these two barrier systems, there may be a desire to integrate this transition using other barrier systems, including existing G4(1S) W-beam guardrail or alternative PCB designs.

Because a majority of the guardrail currently on the highway system consists of the G4(1S) guardrail, there will likely be a need to attach the G4(1S) guardrail to a PCB transition. Two issues must be addressed to transition the G4(1S) system to the MGS guardrail and are related to differences in rail height and splice location. Previous guidance has been given to raise rail height from the G4(1S) to the MGS over a distance of 25 ft to $50 \mathrm{ft}(7.62 \mathrm{~m}$ to 15.21 m$)$. Several options exist to reposition the rail splices from the posts to the midspan locations by omitting a post or using $1 / 2$-post spacing. Three layout options are proposed, but each requires a slightly different layout depending on the preferred splice repositioning method. In addition, each guardrail to PCB transition option requires a slightly different connection point to the nested MGS guardrail to provide a short length of standard MGS prior to the beginning of the guardrail to PCB transition. The three recommended G4(1S) to MGS transitions are detailed below.

1. Omitted Post Option - The transition between the rail splice locations for the G4(1S) to MGS transition can be accomplished through omission of a post after the rail height transition is completed, as shown in Figure 110. Recent research has shown that the omission of a single post in the MGS and creation of a $12.5-\mathrm{ft}(3.81-\mathrm{m})$ unsupported span is acceptable under MASH TL-3 impact conditions [19]. As such, it is recommended that
the splice repositioning can occur following the rail height transition through omission of the post at the first splice following the height transition. This option creates a $9 \mathrm{ft}-41 / 2 \mathrm{in}$. ( 2.86 m ) span between G4(1S) spacing and MGS spacing. MGS attachment to the nested MGS may begin at the first splice following the splice repositioning.
2. Half-Post Spacing in MGS Option - A second option for transitioning from G4(1S) to MGS consists of adding an additional post following the rail height transition, as shown in Figure 111. For this transition, a post at $1 / 2$-post spacing is added after the second post following the rail height repositioning, and standard MGS begins after that point. Attachment of the MGS to the nested rail in the guardrail to PCB transition may begin after one $12.5-\mathrm{ft}(3.81-\mathrm{m})$ long section of standard MGS following the splice repositioning.
3. Half-Post Spacing in G4(1S) Option - A third option for transitioning from G4(1S) to MGS consists of adding an additional post prior to the rail height repositioning, as shown in Figure 112 . For this transition, a post at $1 / 2$-post spacing is added after the final post in the G4(1S) prior to the rail height repositioning, and standard MGS post spacing begins after that point. Attachment of the MGS to the nested rail in the guardrail to PCB transition may begin after one $12.5-\mathrm{ft}(3.81-\mathrm{m})$ long section of standard MGS following the rail height repositioning.

The blockout depth may be converted from the 8 -in. (203-mm) deep G4(1S) blockouts to the 12in. $(305-\mathrm{mm})$ deep MGS blockouts at whatever point is convenient.

Finally, the guardrail to PCB transition that was tested and evaluated herein used a common $12.5-\mathrm{ft}(3.81-\mathrm{m})$ long, F-shape PCB that is used by a majority of the Pooled Fund states in the Midwest. However, there may be potential to use this transition system with alternative PCBs if basic criteria are met.

1. The reinforcement in alternative PCB designs would need to provide equal or greater barrier capacity to that provided by the PCBs used in this research.
2. Alternative PCB segment connections must have comparable or greater structural capacity and torsional rigidity about the longitudinal barrier axis when compared to the as-tested PCB.
3. Alternative PCB geometry may affect the performance of the system. As such, barrier height should be maintained at 32 in . $(813 \mathrm{~mm})$ to maintain a similar or less risk for wheel snag. Differences in the barrier face geometry, such as New Jersey and single-slope barriers, may be acceptable, but they are not recommended at this time without further study. There are concerns that the difference in face geometry may affect vehicle interaction with the PCB in the overlapped barrier region. Thus, it may require revised connection hardware for the W-beam end shoe and blockouts.
4. The PCB segments with alternative lengths could potentially be used but are not recommended without further study due to concerns for potential differences in the PCB deflection and stiffness.
5. Any alternative PCB should have similar mass per unit length to the as-tested PCB system to provide similar inertial resistance, stiffness, and dynamic deflections.
6. Finally, it is recommended that any alternative PCB should meet MASH TL-3. It is also recommended that any alternative PCB have similar MASH TL-3 dynamic deflections to the as-tested PCB. Significantly increased or decreased dynamic deflections may adversely affect the performance of the guardrail to PCB transition system.


Figure 110. Schematic for Transitioning G4(1S) to MGS Prior to Guardrail to PCB Transition, Omitted Post Option


Figure 111. Schematic for Transitioning between G4(1S) and MGS Prior to Guardrail to PCB Transition, Half-Post Spacing in MGS 는 Option


Figure 112. Schematic for Transitioning between G4(1S) and MGS Prior to Guardrail to PCB Transition, Half-Post Spacing in G4(1S) Option

## 13 REFERENCES

1. Manual for Assessing Safety Hardware (MASH), American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2009.
2. Gutierrez, D.A., Bielenberg, R.W., Faller, R.K., Reid, J.D., and Lechtenberg, K.A., Development of a MASH TL-3 Transition Between Guardrail and Portable Concrete Barriers, Final Report to the Nebraska Department of Roads and the Smart Work Zone Deployment Initiative, Report No. TRP-03-300-14, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, June 26, 2014.
3. Polivka, K.A., Faller, R.K., Sicking, D.L., Reid, J.D., Rohde, J.R., Holloway, J.C., Bielenberg, R.W., and Kuipers, B.D., Development of the Midwest Guardrail System (MGS) for Standard and Reduced Post Spacing and in Combination with Curbs, Final Report to the Midwest States’ Regional Pooled Fund Program, Report No. TRP-03-139-04, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, September 2004.
4. Polivka, Faller, Sicking, Rohde, Bielenberg, and Reid, Performance Evaluation of the Midwest Guardrail System - Update to NCHRP 350 Test No. 3-11 with 28" C.G. Height (2214MG-2), Final Report to the National Cooperative Highway Research Program, Report No. TRP-03-171-06, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, October 11, 2006.
5. Polivka, Faller, Sicking, Rohde, Bielenberg, and Reid, Performance Evaluation of the Midwest Guardrail System - Update to NCHRP 350 Test No. 3-10 (2214MG-3), Final Report to the National Cooperative Highway Research Program, Report No. TRP-03-172-06, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, October 11, 2006.
6. Polivka, K.A., Faller, R.K., Sicking, D.L., Rohde, J.R., Bielenberg, B.W., Reid, J.D., and Coon, B.A., Performance Evaluation of the Free-Standing Temporary Barrier - Update to NCHRP 350 Test No. 3-11 with 28" C.G. Height (2214TB-2), Final Report to the National Cooperative Highway Research Program, Report No. TRP-03-174-06, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, October 2006.
7. Winkelbauer, B.J., Putjenter, J.G., Rosenbaugh, S.K., Lechtenberg, K.A., Bielenberg, R.W., Faller, R.K., and Reid, J.D., Dynamic Evaluation of MGS Stiffness Transition with Curb, Final Report to the Midwest State's Pooled Fund Program, Report No. TRP 03-291-14, Midwest Roadside Safety Facility, University of Nebraska Lincoln, Lincoln, Nebraska, June 30, 2014.
8. Hinch, J., Yang, T.L., and Owings, R., Guidance Systems for Vehicle Testing, ENSCO, Inc., Springfield, Virginia, 1986.
9. Center of Gravity Test Code - SAE J874 March 1981, SAE Handbook Vol. 4, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1986.
10. MacInnis, D., Cliff, W., and Ising, K., A Comparison of the Moment of Inerita Estimation Techniques for Vehicle Dynamics Simulation, SAE Technical Paper Series - 970951, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1997.
11. Society of Automotive Engineers (SAE), Instrumentation for Impact Test - Part 1 Electronic Instrumentation, SAE J211/1 MAR95, New York City, NY, July, 2007.
12. Mongiardini, M., Faller, R.K., Reid, J.D., Sicking, D.L., Stolle, C.S., and Lechtenberg, K.A., Downstream Anchoring Requirements for the Midwest Guardrail System, Final Report to the Wisconsin Department of Transportation, Report No. TRP-03-279-13, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, October 28, 2013.
13. Mongiardini, M., Faller, R.K., Reid, J.D., and Sicking, D.L., Dynamic Evaluation and Implementation Guidelines for a Non-Proprietary W-Beam Guardrail Trailing-End Terminal, Paper No. 13-5277, Transportation Research Record No. 2377, Journal of the Transportation Research Board, TRB AFB20 Committee on Roadside Safety Design, Transportation Research Board, Washington D.C., January 2013, pages 61-73.
14. Stolle, C.S., Reid, J.D., Faller, R.K., and Mongiardini, M., Dynamic Strength of a Modified W-Beam BCT Trailing-End Termination, Paper No. IJCR 886R1, Manuscript ID 1009308, International Journal of Crashworthiness, Taylor \& Francis, Vol. 20, Issue 3, Published online February 23, 2015, pages 301-315.
15. Griffith, M.S., Federal Highway Administration (FHWA). Eligibility Letter HSST/B-256 for: Trailing-End Anchorage for 31" Tall Guardrail, December 18, 2015.
16. Vehicle Damage Scale for Traffic Investigators, Second Edition, Technical Bulletin No. 1, Traffic Accident Data (TAD) Project, National Safety Council, Chicago, Illinois, 1971.
17. Collision Deformation Classification - Recommended Practice J224 March 1980, Handbook Volume 4, Society of Automotive Engineers (SAE), Warrendale, Pennsylvania, 1985.
18. Roadside Design Guide, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2011.
19. Lingenfelter, J.L., Rosenbaugh, S.K., Bielenberg, R.W., Lechtenberg, K.A., Faller, R.K., and Reid, J.D., Midwest Guardrail System (MGS) with an Omitted Post, Final Report to the Midwest States Pooled Fund Program, Report No. TRP-03-326-16, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, February 22, 2016.

## 14 APPENDICES

## Appendix A. Material Specifications

| Description | Material Specification | Reference |
| :---: | :---: | :---: |
| W-Beam End Shoe Section | 10 gauge [3.4] AASHTO M180 Galv. | R\#15-0515 H\#635222 |
| 12'-6" [3810] W-Beam MGS Section | 12 gauge [2.7] AASHTO M180 Galv. | R\#15-0602 H\#8479 AND H\#4614 |
| 12'-6" [3810] W-Beam MGS End Section | 12 gauge [2.7] AASHTO M180 Galv. | R\#15-0602 H\#8479 |
| W6"x8.5" [W152x12.6], 72" Long [1829] Steel Post | ASTM A992 Min. 50 ksi [345 MPa] Steel Galv. or W6x9 [W152x13.4] ASTM A36 Min. 36 ksi [248 MPa] Steel Galv. | R\#15-0505 H\#2413988, R\#14-0097 H\#55028671 Red, R\#14-0554 H\#1311743, R\#12-0348 Blue |
| 6"x12"x14 1/4" [152x305x368] Timber Blockout for Steel Posts | SYP Grade No. 1 or better | Green, Blue, Dark Blue, and Light Blue |
| 16D Double Head Nail | N/A | N/A |
| BCT Timber Post - MGS Height | SYP Grade No. 1 or better (No knots 18" [457] above or below ground tension face) | R\#16-0010 Ch\#3547 |
| 72" [1829] Long Foundation Tube | ASTM A500 Grade B Galv. | H\#0173175 R\#15-0157 |
| Ground Strut Assembly | ASTM A36 Steel Galv. | R\# 090453-8 |
| $23 / 8 "$ " [60] O.D. x $6 "$ [152] Long BCT Post Sleeve | ASTM A500 Grade B (.C) | R\#15-0626 H\#E86298 |
| 8"x8"x5/8" [203x203x16] Anchor Bearing Plate | ASTM A36 Steel Galv. | R\#090453-9 H\#6106195 |
| Anchor Bracket Assembly | ASTM A36 Steel Galv. | "A2Black" H\#V911470 |
| Blockout Mounting Plate | ASTM A36 Steel Galv. | R\#15-0536 H\#B417196 |
| $\begin{gathered} 6 " x 17 \text { 3/4"x14 1/4" [152x451x368] Timber } \\ \text { Blockout for Steel Posts } \\ \hline \end{gathered}$ | SYP Grade No. 1 or better | R\#10-0142 Red |
| $\begin{gathered} \hline 6 " x 123 / 4 " x 141 / 4 "[152 \times 324 \times 368] \text { Timber } \\ \text { Blockout for Steel Posts } \end{gathered}$ | SYP Grade No. 1 or better | R\#10-0142 Red |
| $\begin{gathered} \hline 6 " x 73 / 4 " x 141 / 4 "[152 \times 197 \times 368] \text { Timber } \\ \text { Blockout for Steel Posts } \end{gathered}$ | SYP Grade No. 1 or better | R\#10-0142 Red |
| $\begin{gathered} \hline \text { 6"x2 3/4"x14 1/4" [152×70x368] Timber } \\ \text { Blockout for Steel Posts } \\ \hline \end{gathered}$ | SYP Grade No. 1 or better | R\#10-0142 Red |
| Portable Concrete Barrier | $\min \mathrm{f}^{\prime} \mathrm{c}=5000 \mathrm{psi}$ [34.5 MPa] | Letter of Strength Compliance provided R\#15- 0531 |
| 1 1/4" [32] Dia., 28" [711] Long Connector Pin | ASTM A36 ASTM 1018 | R\#15-0531 H\#15100585 |
| 1/2" [13] Dia., 72" [1829] Long Form Bar | ASTM A615 Grade 60 | R\#15-0531 H\#64050283 |
| 1/2" [13] Dia., 146" [3708] Long Longitudinal Bar | ASTM A615 Grade 60 | R\#15-0531 H\#64050283 |
| 5/8" [16] Dia., 146" [3708] Long Longitudinal | ASTM A615 Grade 60 | R\#15-0531 H\#58020158 |
| 3/4" [19] Dia., 36" [914] Long Anchor Loop Bar | ASTM A615 Grade 60 | R\#15-0531 H\#57147245 |
| 3/4" [19] Dia., 102" [2591] Long Connection Loop Bar | ASTM A709 Grade 70 or A706 Grade 60 | R\#15-0531 H\#54130870 L\#H1401012620 |
| 3/4" [19] Dia., 91" [2311] Long Connection Loop Bar | ASTM A709 Grade 70 or A706 Grade 60 | R\#15-0531 H\#54130870 L\#H1401012620 |
| $\begin{gathered} \hline \text { 3/4" [19] Dia., 101" [2565] Long Connection } \\ \text { Loop Bar } \\ \hline \end{gathered}$ | ASTM A709 Grade 70 or A706 Grade 60 | R\#15-0531 H\#54130870 L\#H1401012620 |

Figure A-1. Bill of Materials, Test Nos. MGSPCB-1 through MGSPCB-3

## Certified Anallysis

Trinity Highway Products, LLC 550 East Robb Ave.
Lima, OH 45801
Customer: MIDWEST MACH.\& SUPPLY CO.
P. o. BOX 703

MILFORD, NE 68405
Project: RESALE **TARP LOAD**
Order Number: 1235474 Prod Ln Grp: 3-Guardrail (Dom)

Customer PO: 3013
BOL Number:. 86543
Ship Date:
Document\#: 1 R\#15-0515 H\#635222
Shipped To: NE MGS/PCB Transition Guardrail Shoe Use State: NE April 2015 SMT


Figure A-2. W-Beam End Shoe Section, Test Nos. MGSPCB-1 through MGSPCB-3

GREGORY HIGHWAY PRODUCTS, INC. 4100 13th St SW

 | Ship Date: | $\begin{array}{l}\text { E/2/2015 } \\ \text { Customer P.O.: }\end{array}$ |
| :--- | :--- |
| Shipped to: | $\begin{array}{l}\text { 3078 } \\ \text { MIOWEST MACHINERY \& SUPPLY Co. }\end{array}$ | $\begin{array}{ll}\text { Shipped to: } & \text { MIOWES } \\ \text { Project } & \text { SToCK } \\ \text { GHP Order No. } & 181769\end{array}$ 181769

| Tensile | Yield | Elong. | Quantity | Class | Type | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 77194 | 55406 | 25.48 | 10 | A | 1 |  |
| ${ }^{82673}$ | 63255 | 27.87 | 40 | A | 1 | $12 \mathrm{CA} 12 \mathrm{FTGIN/3FT1} 11 / 2 \mathrm{~N}$ WE T1 |
| 77105 | 59917 | 21 | 40 | A | 1 | ${ }^{12 G A} 12 \mathrm{FTGIN/3FT} 11 / 21 \mathrm{~N}$ WBT1 |
| 84559 | 62542 | 13.3 | 40 | A | 1 | 12GA 12FTGIN/3FT1 1 12IN WET1 |
| 77442 | 54782 | 24.66 | ${ }^{16}$ | A | 1 | 128A 12FFEIN/3FT1 1 121N WB T1 |
| 79319 | 56709 | 23.4 | 10 | A | , | 12 GA 12 FTGIN WB T1 FLEAT-SKT COMBO PAN |
| 78865 | 55889 | 21.81 | s | A | 1 | 12 GA 12 FTGIN We T1 FLEAT-SKT COMBO PAN |
| 77105 | 59917 | 21 | 100 | A | 1 | 12 AA 25FTOIN 3FT1 1 RIN WB T1 |
| 79006 | 61740 | 23.78 | $\theta$ | A | 1 | 12GA 9FT4 12IN 3FT1 12IN WB T1 |

 AuIs comply with A.STMA.-5s) spocatcations and aro galvanized in Al Galvarizing has sccarred in hie untied stites

All Guartrail and Teminal Sections meets AASHTO $M$-180, All structural steel meets AASHTO $M$ - 183 \& M270 All miliserand tauts are of Domestic Crigin

ndrew Artar. VP of Sales \& Marke


Figure A-3. W-Beam MGS End Section, Test Nos. MGSPCB-1 through MGSPCB-3


Bolts comply with ASTM A-307 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated. Nuts comply with ASTM A-563 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated. All other galvanized material conforms with ASTM-123 \& ASTM-525
All steel used in the manufacture is of Domestic Origin, "Made and Melted in the United States"
All Guardrail and Terminal Sections meets AASHTO M-180, All structural steel meets AASHTO M-183 \& M270
All Bolts and Nuts are of Domestic Origin
All material fabricieted in accorflance with Nebragkik Department of Transportation
By:- Inene Tilee
By:
Vice President of Sales \& Marketing
Gregory Highway Products, Inc.
STATE OF OHIO: COUNTY OF STARK
Sworn to and subscribed before me, a N
Sworn to and subscribed before me, a Notary Public, by
Andrew Artar this 8th day of May, 2009

CYNTHIA K. CRAWFORD Notary Public, State of Ohio

Figure A-4. W-Beam MGS Section, Test Nos. MGSPCB-1 through MGSPCB-3

NOCOR STEEI BERXEIEY
p.0. Box 2259 s.c. 2946

## SOld Io: HIGAWAY SAFEIY CORP <br> BCX 35 B

GLastonbury, CI 06033

CERIIEIED MILI IESI REDORI All beams produced by Nucor-berkeley are cast and Mercury has not been used in the direct manufacturing of this material
 MARION, DE 43301

Customer $\begin{array}{ll:l}\text { B. } & \text { I. } & \text {...: } \\ 1110076\end{array}$

PECIFICATIONS: Iested in accordance with ASIM specification A6/A6m-14 and a370. Quality Manuel Rev \#27.


2 Eeat (s) for this MIR.
R\#15-0515 H\#2413988
W6x8. $5 \times 6{ }^{\prime}$
April 2015 SMT




```
\(=C+((\mathrm{Mn}+\mathrm{Si}) / 6)+((\mathrm{Cr}+\mathrm{Mn}+\mathrm{V}+\mathrm{C} \mathrm{C}) / 5)+((\mathrm{Ni}+\mathrm{Cu}) / 15)\)
I hereby certify that the contents of this report are accurate and
coryect, All test results and operations performed by the material
manufacturer are in compliance with materlal specifications, and
```



Figure A-5. Steel Posts, Test Nos. MGSPCB-1 through MGSPCB-3

# HIGHWWAY SAFETY CORP <br> P.O. BOX 358 GLASTONBURY, CT 06033 <br> CERTIFICATE OF COMPLIANCE/ANALYSIS REPORT 



ALL STEEL USED IN MANUFACTURING IS MADE AND MELTED IN THE USA, INCLUDING HARDWARE FASTENERS, AND COMPLIES WITH THE BUY AMERICA ACT. ALL COATINGS PROCESSES ARE PERFORMED IN THE USA AND COMPLY WITH THE BUY AMERICA ACT. BOLTS COMPLY WITH ASTMA-307 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTMA-153, UNLESS OTHERWISE STATED. NUTS COMPLY WITH ASTMA- 563 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTMA-153, UNLESS OTHERWISE STATED. WASHERS COMPLY WITH ASTM F-436 AND/OR F-844 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTMA-153, UNLESS OTHERWISE STATED. ALL GUARDRAIL MEETS AASHTO M-180 AND ALL STRUCTURAL STEEL MEETS AASHTO M-270. ALL OTHER GALVANIZED MATERIAL CONFORMS WITH ASTMA-123. ALL OTHER ITEMS COMPLY WITH AASHTO M-111, M-165, M-133, M-265, ASTM A36, ASTMA-709, ASTMA-123, ASTM A505, AND ASTMA588 SPECIFICATIONS IF APPLICABLE. COMPLIANCE WITH ALL SPECIFICATIONS OF DEPARTMENT OF PUBLIC WORKS, DEPARTMENT OF HIGHWAYS AND TRANSPORTATION, DIVISION OF ROADS AND BRIDGES AND STATE HIGHWAY ADMINISTRATION IS MET IN ALL RESPECTS.


MARGARET J. SATALINO
NOTARY PUBEIC
MY COMMISSION EXPIRES OCT. 31,2016

W6x8.5 R\#14-0097 Red Paint September 2013 SMT

# HIGHWAY SAFETY CORP <br> P.0. BOX 358 

GLASTONBURY, CT 06033
CERTIFICATE OF COMPLIANCE/ANALYSIS REPORT

SOLD TO:
MIDWEST MACHINERY \& SUPPLY P.O. BOX 703

Milford, NE, USA

SHIP TO:
MIDWEST MACHINERY \& SUPPLY 974 238TH ROAD
MILFORD

REFERENCE: STOCK
DATE SHIPPED: 08/08/13


ALL STEEL USED IN MANUFACTURING IS MADE AND MELTED IN THE USA, INCLUDING HARDWARE FASTENERS, AND COMPLIES WITH THE BUY AMEEICA ACT. ALL COATINGS PROCESSES ARE PERFORMED IN THE USA AND COMPLY WITH THE BUY AMERICA ACT. BOLTS COMPLY WITH AST A - 307 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTMA-153, UNLESS OTHERWISE STATED. NUTS COMPLY WITH ASTMA-563 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTMA-153 UNLESS OTHERWISE STATED. WASHERS COMPLY WITH ASTM F-436 AND/OR F- 844 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTMA-153 UNLESS OTHERWISE STATED. ALL
GUARDRAIL MEETS AASHTO M-180, AND ALL STRUCTURAL STEEL MEETS AASHTO M-270. ALL OTHER GALVANIZED MATERIAL CONFORMS WITH ASTMA-123. ALL OTHER ITEMS COMPLY WITH AASHTO M-111, M-165, M-133, M-265, ASTM A36, ASTMA-709, ASTMA-123, ASTM A505, AND ASTMA588 SPECIFICATIONS IF APPLICABLE. COMPLIANCE WITH ALL SPECIFICATIONS OF DEPARTMENT OF PUBLIC WORKS, DEPARTMENT OF HIGHWAYS AND TRANSPORTATION, DIVISION OF ROADS AND BRIDGES AND STATE HIGHWAY ADMINISTRATION IS MET IN ALL RESPECTS.

HIGHWAY SAFETY CORPORATION


NOTARIZED UPON REQUEST:
STATE OF CONNECTICUT COUNTY OF HARTFORD
SWORN AND SUBSCRIBED BEFORE ME THIS_ DAY OF HLLQLLST 20 L_ 3
$\frac{\text { Halqualir } 1 \text { Golithluso }}{\text { Notary Public }}$


The above figures are certified chemical and physical test records as contained in the permanent records of company. This material, including the billets, was melted and manufactured in the USA. CMTR complies wilh EN 102043.1

```
Nhackeary BHASKAR YALAMANCHILI
yan wang
qUALTTY ASSURANCE MGR.
```

Figure A-8. Steel Posts, Test Nos. MGSPCB-1 through MGSPCB-3

P.0. BOX 358

GLASTONBURY, CT 06033
CERTIFICATE OF COMPLIANCEIANALYSIS REPORT


ALL STEEL USED IN MANUFACTURING IS MADE AND MELTED IN THE USA, INCLUDING HARDWARE FASTENERS, AND COMPLIES WITH THE BUY AMERICA ACT. ALL COATINGS PROCESSES ARE PERFORMED IN THE USA AND COMPLY WITH THE BUY AMERICA ACT. BOLTS COMPLY WITH ASTMA-307 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTMA-153, UNLESS OTHERWISE STATED. NUTS COMPLY WITH ASTMA-563 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTMA-153 UNLESS OTHERWISE STATED. WASHERS COMPLY WITH GUARDRAIL MEETS AASHTO M-180, AND ALL STRUCTURAL STEEL MEETS AASHTO M-270. ALL OTHER GALVANIZED MATERIAL CONFORMS WITH ASTMA-123. ALL OTHER ITEMS COMPLY WITH AASHTO M-111, M-165, M-133, M-265, ASTM A36, ASTMA-709, ASTMA-123, ASTM A505, AND ASTMA588 SPECIFICATIONS IF APPLICABLE. COMPLIANCE WITH ALL SPECIFICATIONS OF DEPARTMENT OF PUBLIC WORKS, DEPARTMENT OF HIGHWAYS AND TRANSPORTATION, DIVISION OF ROADS AND BRIDGES AND STATE HIGHWAY ADMINISTRATION IS MET IN ALL RESPECTS

## NOTARIZED UPON REQUEST:


$\qquad$
$\frac{\text { Indanciare.f fataicius }}{\text { Notary Public }}$

Figure A-9. Steel Posts, Test Nos. MGSPCB-1 through MGSPCB-3

SPECIEICAIIONS: Tested in accordance with ASIM specification A6-13/A6M-12 and R370. Quality Manual Rev H27.
ASME
ASTM
$:$ A9-36 07a $11:$ A36-12/A529-05-50/A572 5012a/A70913 50s
IB-B0600800

| Description | $\begin{gathered} \text { Beath } \\ \text { Grade(s) } \\ \text { Iest/Beat JW } \end{gathered}$ | $\begin{aligned} & \text { Yield/ } \\ & \text { Tonsile } \\ & \text { Ratio } \end{aligned}$ | $\begin{aligned} & \text { Yield } \\ & \text { (PSI) } \\ & \text { (MPa) } \end{aligned}$ | $\begin{aligned} & \text { Tensile } \\ & \text { (TSI) } \\ & \text { (MPa) } \end{aligned}$ | Elong |  | $\begin{aligned} & \mathrm{Mn} \\ & \mathrm{Mo} \\ & \mathrm{Ii} \end{aligned}$ | $\begin{gathered} \mathrm{p} \\ \mathrm{Sn} \\ \because * * * * * \end{gathered}$ |  | $\begin{aligned} & \mathrm{Si} \\ & \mathrm{~V} \\ & \mathrm{~N} \end{aligned}$ |  |  | $\begin{aligned} & \text { CE1 } 1 \\ & \text { CE2 } \\ & \text { PCm } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| W6x8. 5 | 1311748 | . 79 | 54100 | 68100 | 27.20 | 06 | . 83 | . 008 |  | . 20 |  | . 05 |  |
| 042, 00.00' | A992-11 |  | 373 | 470 |  | . 03 | . 01 | . 0088 | . 0003 | . 003 | . 014 |  | . 2627 |
| W150x12.6 |  | . 80 | 55200 | 68900 | 27.74 |  | . 001 |  |  | . 0054 |  | . 13 | . 1263 |
| 012.8016m | ans |  | 381 | 475 |  | (s) 14 | 94 lbs |  |  |  |  | Inv\#: |  |


| w6x8.5 | 1311743 | . 81 | 57600 | 71200 | 28.29 | . 07 |  | . 88 | . 009 | . 027 | . 24 | . 17 | . 05 | . 24 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $042 \%$ $W 150812.6000$ | A992-11 | . 81 | 397 58400 | 71901 | 27.46 | . 04 |  | . 0101 | .0088 | . 0003 | . 6004 | . 016 | 19 | .2835 .1335 |
| 012.8016m | ans |  | 403 | 496 | 84 P |  | 29,98 | lbs |  |  |  |  |  | - |

2 Beat (s) for this MTR.
-

$\mathrm{PCm}=\mathrm{C}+\langle\mathrm{Si} / 30\rangle+(\mathrm{Mn} / 20\rangle+(\mathrm{Cu} / 20\rangle+(\mathrm{Ni} / 60)+(\operatorname{Cr} / 20)+\langle\mathrm{Mo} / 15)+(\mathrm{V} / 10\rangle+5 \mathrm{~B}$
I hereby certify that the contents of this report are accurate and
correct. All test results and operations performed by the material manufacturer are in compliance with material specifications, and


Figure A-10. Steel Posts, Test Nos. MGSPCB-1 through MGSPCB-3

GREGORY HIGHWAY PRODUCTS, INC.
4100 13th St. P.O. Box 80508
Canton, Ohio 44708

Customer: | MIDWEST MACHINERY \& SUPPLY CO |  |
| :--- | :--- |
|  |  |
|  |  |
|  | LINCOLN,NE, 68501 |

Test Report
B.O.L. \#

5239AA-1
Customer P.O.: 2551
Shipped to: MIDWEST MACHINERY \& SUPPLY CO
Troject: STOCK
GHP Order No. 5239AA

| HT \# code | C. | Mn. | P. | S. | Si. | Tensile | Yield | Elong. | Quantity | Class | Type |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L81665 | 0.1 | 0.8 | 0.01 | 0.025 | 0.19 | 63000 | 53300 | 20 | 200 | 2 |  |
| L83827 | 0.09 | 0.94 | 0.013 | 0.031 | 0.23 | 70400 | 56300 | 24 | 200 | 2 |  |
| L83786 | 0.09 | 0.85 | 0.011 | 0.038 | 0.23 | 66500 | 52300 | 20 | 200 | 2 |  |
| L83766 | 0.09 | 0.88 | 0.011 | 0.036 | 0.19 | 67200 | 53300 | 21 | 200 | 2 |  |
| L81670 | 0.09 | 0.92 | 0.014 | 0.028 | 0.2 | 62000 | 47400 | 21 | 50 | 2 |  |

Description
6IN WF AT $8.5 \times 6 F T$ OIN GR POST 6 IN WF AT $8.5 \times 6 \mathrm{FT}$ OIN GR POST
GIN WF AT $8.5 \times 6 \mathrm{FFT}$ OIN GR POST 6IN WF AT 8.5 X 6 FT OIN GR POST GIN WF AT $8.5 \times$ GFT OIN GR POST GIN WF AT 8.5 X 6 FT OIN GR POST

Bolts comply with ASTM A-307 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated. Nuts comply with ASTM A-563 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated. All other galvanized material conforms with ASTM-123 \& ASTM-653
All steel used in the manufacture is of Domestic Origin. "Made and Melted in the United States"
Ali Guardrail and Terminal Sections meets AASHTO M-180, All structural steel meets AASHTO M-183 \& M270 All Bolls and Nuts are of Domestic Origin
All material fabricated in accordance with Nebreska Department of Transportation


Gregory Highway Products, Inc.

STATE OF OHIO: COUNTY OF STARK

CWNP Invoice $\qquad$ shipped To Miswest-Milifod
Customer PO 2892
Central Nebraska Wood Preservers, Inc. Certification of Inspection
Date: $\qquad$
Specifications: Highway Construction Use
Preservative: $\qquad$ $\mathrm{CCA}-\mathrm{C} 0.60 \mathrm{pcf}$ $\qquad$

| $\underset{\stackrel{m}{\#}}{\substack{\text { Charge }}}$ | Date Treated | Grade | Material Size, Length \& Dressing | \# Pieces | White Moisture Readings | Penetration \# of Borings \& \% Conforming | Actual <br> Retentions <br> \% Conforming |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 18379 | 4/16/14 | \$1 | $6 \times 12-14^{\prime \prime}$ Bloes | 756 | 19 | 1/20 95\% | .651 pet |
| 18379 | 4/16/14 | * |  | 84 | 19 | Yo, 95\% | .65 ( pot |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  | . |

Number of pieces rejected and reason for rejection: plose
Statement: The above reference material was treated and inspected in accordance with the above referenced specifications.

MGS Wood Blockouts 6x12x14" R\#14-0554
GREEN TAGS don't mistaken these for the 2part blockouts because they are also GREEN. July 2014 SMT

Figure A-12. Timber Blockouts, Test Nos. MGSPCB-1 through MGSPCB-3


Figure A-13. Timber Blockouts, Test Nos. MGSPCB-1 through MGSPCB-3

```
R#15-0627 H#20297970 L#140530L
5/8x10" Guardrail Bolt
June 2015 SMT
```


## TRINITY MGHWAY PRODUCTS, LLC <br> 425 East O'Connor Ave. <br> Lima, Ohie 45801 <br> 419-227-1296

MATERIAL CERTIFICATION


Speolification: ASTM A307-A/A153 / F2329
MATERLAL CHEMISTRY.

| Heat | c | MN | p | S | St | NI | CR | MO | cu | SN | V | AL | N | B | TI | NB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20297970 | . 09 | . 33 | , 006 | . 001 | . 06 | . 03 | . 04 | . 01 | . 08 | . 002 | . 001 | 026 | . 008 | . 0001 | . 001 | . 002 |
| W\%** |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

PLATING ORPROTECTIVE COATING
HOT DIP GALVANIZED (Lot Ave:Thickness / Mis) $\qquad$ (2:0 Milis Minimum)
****THUS PRODUCT WAS MANUFACTURED XN THE UNITED STATES OF AMERYCA****
 WE HEREBY CEREXEY TRAT TO THE BES OF OUR KNOWLEDGE ALL INFORMI I ÓN CONTANED HEREIN IS correct.


STATE OFOHRO, COUNTY OF ALLEN SWORN AND SUBSGRIBED BEFORE ME THIS


2014
 NOTARY PUBLIG
425E OUCONNOR AVENUE
SHERRI BRAUN
LIMA, OHO 45801
419-227-1296.
SHERRIBRAUN
Nolary Pubilic, State of Ohis
My Comimission Expires April 20, 2019


Figure A-14. $5 / 8$-in. (16-mm) x 10-in. (254-mm) Guardrail Bolts, Test Nos. MGSPCB-1 through MGSPCB-3

Figure A-15. $5 / 8-\mathrm{in}$. ( $16-\mathrm{mm}$ ) x $14-\mathrm{in}$. (356-mm) Post Bolts, Test Nos. MGSPCB-1 through MGSPCB-3

## Certiffied Analysis

Crinity Highway Products, LLC
;50 East Robb Ave.
ima, OH 45801
Zustomer: MIDWEST MACH.\& SUPPLY CO.

| Order Number: | 1236801 | Prod Ln Grp: |
| ---: | :--- | :---: |
| 3-Guardrail (Dom) |  |  |
| Customer PO: | 3028 |  |
| BOL Number: | 86849 | Ship Date: |

As of: $3 / 13 / 15$
P. O. BOX 703

MILFORD, NE 68405
roject: RESALE **TARP LOAD** **TARP LOAD** **TARP LOAD**

Document \#: 1
Shipped To: NE


Figure A-16. $5 / 8$-in. ( $16-\mathrm{mm}$ ) x $14-\mathrm{in}$. ( $356-\mathrm{mm}$ ) Guardrail Bolts, Test Nos. MGSPCB-1 through MGSPCB-3

## Certifified Amallysis

rinity Highway Products, LLC
50 East Robb Ave.
ima, OH45801
ustomer: MIDWEST MACH.\& SUPPLY CO.
P. O. BOX 703

Order Number: 1236801
Prod Ln Grp: 3-Guardrail (Dom)
Customer PO: 3028
BOL Number: 86849
Ship Date:
Document \#: 1
Shipped To: NE
Use State: NE
oject: RESALE **TARP LOAD****TARP LOAD****TARP LOAD**
LL GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURAL STEEL MEETS ASTM A36 UNLESS OTHERWISE STATED.
LL COATINGS PROCESSES OF THE STEEL OR IRON ARE PERFORMED IN USA AND COMPLIES WITH THE "BUY AMERICA ACT"
LL GALVANIZED MATERIAL CONFORMS WITH ASTM A-123 (US DOMESTIC SHIPMENTS)
LL GALVANIZED MATERIAL CONFORMS WITH ASTM A-123 \& ISO 1461 (INTERNATIONAL SHIPMENTS)
INISHED GOOD PART NUMBERS ENDING IN SUFFIX B,P, OR S, ARE UNCOATED
OLTS COMPLY WITH ASTM A-307 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTM A-153, UNLESS OTHERWISE STATED.
UTS COMPLY WITH ASTM A-563 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTM A-153, UNLESS OTHERWISE STATED. 'ASHERS COMPLY WITH ASTMF-436 SPECIFICATION AND/OR F-844 AND ARE GALVANIZED IN ACCORDANCE WITH ASTMF-2329,
4" DIA CABLE 619 ZINC COATED SWAGED END AISI C-1035 STEEL ANNEALED STUD 1" DIA ASTM449 AASHTO M30, TYPEII BREAKING [RENGTH - 46000 LB

State of Ohio, County of Allen. Swomnand sabscribed before fue this 13rd day of Mavelpoz@ul5
Notary Public: ommission Expires:


Figure A-17. $5 / 8$-in. ( $16-\mathrm{mm}$ ) x 14 -in. ( $356-\mathrm{mm}$ ) Guardrail Bolts, Test Nos. MGSPCB-1 through MGSPCB-3

## INSPECTION CERTIFICATE

ROCKFORD BOLT \& STEEL CO.
126 MIL STREET
ROCKFORD, IL 61101
815-968-0514 FAX\# 815-968-3111

COATING: ATM SPECIFICATION F2329 HOT DIP GALVANIZE
STEEL SUPPLIER: NUCOR, NUCOR, NUCOR, NUCOR
HEAT NO. 848653, 749237, 849289, 846672
QUANTITY AND DESCRIPTION:
600 PCS $5 / 8^{\prime \prime} \times 22^{*}$ GUARD RAIL BOLT p\&l a 1
WE HEREBY CERTIFY THE ABOVE BOLTS HAVE BEEN MANUFACTURER BY'ROCKIFORD BOLT AND STEEL THE MATERiAL USED WAS MELTED AND MANUFACTURED IN THE USA. WE FURTHER CERTIFY THAT THIS DATA IS A TRUE REPRESENTATiON OF INFORMATION PROVIDED BY THE MATERIALS SUPPLIER, AND THAT OUR PROCEDURES FDR THE CONTROL OF PRODUCT QUALTY ASSURE THAT ALL ITEMS FURNISHED ON THIS ORDER MEET OR EXCEED ALL APPLICABLE TESTS, PROCESS, AND INSPECTION REQUIREMENTS PER ABOVE SPECIFICATION.

## STATE OF ILLINOIS

COUNTY OF WINNEBAGO
SIGNED BEFORE ME ON TH IS
270, DAY OF Vhbsi......2009


Figure A-18. $5 / 8$-in. (16-mm) x $22-\mathrm{in}$. (559-mm) Post Bolts, Test Nos. MGSPCB- 1 through MGSPCB-3


Figure A-19. 18-in. (457-mm) Post Bolts, Test Nos. MGSPCB-1 through MGSPCB-3


Figure A-20. $5 / 8$-in. (16-mm) x 10-in. (254-mm) Post Bolts, Test Nos. MGSPCB-1 through MGSPCB-3



Figure A-21. $5 / 8$-in. ( $16-\mathrm{mm}$ ) x 10-in. (254-mm) Post Bolts, Test Nos. MGSPCB-1 through MGSPCB-3
This is to certify that the materials shipped, as indicated, conform to the State of Nebraska specifications. Order Number: 158755
Project Number: N/A

| QUANTITY | DESCRIPTION | CHARGE NO. | TREATMENT | TREATER |
| :---: | :---: | :---: | :---: | :---: |
| 60. | 6X8-19" (2H) BLOCK | TX-3547 | CCA | ATS-NAC |
| 120 | 6X8-19" (2H) OS THRIE BLOCK | TX-3547 | CCA | ATS-NAC |
| 100 | 6X12-19" (2H) OS THRIE BLOCK | TX-3547 | CCA | ATS-NAC |
| 400 | 6X12-19" (2H) OS THRIE BLOCK | TX-3546 | CCA | ATS-NAC |
| 48 | 6X8-6' 2 H THRIE POST | TX-2360 | CCA | ATS-NAC |
| 96 | 6X8-6' MGS CRT POST | TX-3547 | CCA | ATS-NAC |
| 40 | 5.5X7.5-45" BCT POST | TX-3227 | CCA | ATS-NAC |
| 40 | 5.5X7.5-46" BA POST | TX-3547 | CCA | ATS-NAC |
|  |  |  |  |  |
|  |  |  |  |  |

ATS - AMERICAN TIMBER AND STEEL, NORWALK, OH
MWT-OK - MIDWEST WOOD TREATING, INC., CHICKASHA, OK ATS-NAC - AMERICAN TIMBER AND STEEL, NACADOCHES, TX GAT- GREAT AMERICAN TREATING, TYLER,TX
Made \& Treated in the USA. Meets AASHTO Specs M133 \& M168.

AMERICAN TIMBER AND STEEL
By Derek Hoebing
Title Guardrail Salesman
Date $\qquad$ May 8, 2015

NOTARIZED
Sworn to and subscribed before me


American Timber And Steel Corp $\star 4832$ Plank Rd / PO Box $767 \star$ Norwalk, OH $44857 \star$ Ph: $419.668 .1610 \star$ Fax: 419.663 .1077


Figure A-22. BCT Timber Posts, Test Nos. MGSPCB-1 through MGSPCB-3

| INSPECTION CERTIFICATE |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ROCKFORD BOLT \& STEEL CO. 126 MILL STREET |  |  |  |  |  |
| CUSTOMER NAME: | TRINITY INDUSTRIES |  |  |  |  |
| CUSTOMER P.O. : | 143227 |  |  |  |  |
| INVOICE\#: 946256 |  | DATE SHIPPED: | 6/20/11 |  |  |
| LOT \#: 22191 |  |  |  |  |  |
| SPECIFICATION: | ASTM A307, GRADE A MILD CARBON STEEL BOLTS |  |  |  |  |
|  | TENSILE RESULTS: | SPECIFICATION $60,000 \mathrm{~min}$. | ACTUAL <br> 81,460 | 70.642 70,341 | $\begin{gathered} 76,898 \\ 76,623 \end{gathered}$ |
|  | HARDNESS RESULTS: | SPECIFICATION | 80.63 | 83.90 | 84.00 |
|  |  | 100 MAX | 88.33 | 77.90 | 85.00 |

COATING: ASTM SPECIFICATION F2329 HOT DIP GALVANIZE
STEEL SUPPLIER: NUCOR, CHARTER, NUCOR
HEAT NO. NF 11101335,10132120, NF11101336
QUANTITY AND DESCRIPTION:
18,900 PCS $5 / 8^{\prime \prime} \times 14^{\prime \prime}$ GUARD RAIL BOLT P/N 3540G

WE. HEREBY CERTIFY THE ABOVE BOLTS HAVE BEEN MANUFACTURED BY ROCKFORO BOLT AND STEEL. THE MATERLAL USED WAS MELTED AND MANUFACTURED IN THE U.SA. WE FURTHER CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIALS SUPPLIER, AND THAT OUR PROCEDURES FOR THE CONTROL OF PRODUCT QUALTY ASSURE THAT ALL ITEMS FURNISHED ON THIS ORDER MEET OR EXCEED ALL APPLICABLE TESTS, PROCESS, AND INSPECTION REOUIREMENTS PER ABOVE SPECIFICATION

STATE OF LLUNOIS
COUNTY OF WINNEBAGO
SIGNED EEFORE ME ONTHIS Rul 20 II


Figure A-23. $5 / 8$-in. ( $16-\mathrm{mm}$ ) x 14-in. (356-mm) Guardrail Bolts, Test No. MGSPCB-3
NIIERER
NUCOR CORPORATION
NUCOR STEEL NEBRASKA


Figure A-24. $5 / 8$-in. (16-mm) x 14-in. (356-mm) Guardrail Bolts, Test No. MGSPCB-3

## Certified Analysis

Trinity Highway Products, LLC 550 East Robb Ave. Lima, OH 45801
Customer: MIDWEST MACH.\& SUPPLY CO P. O. BOX 703 MILFORD, NE 68405

Project: STOCK

| Qty | Part\# | Description | Spee | CL | TY | Heat Code/ Heat | Yield | TS | Elg | C | Mn | P | S | Si | Cu | Cb | Cr | Vn | ACW |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 701A | . $25 \times 11.75 \times 16$ CAB ANC | A-36 |  |  | A3V3361 | 48,600 | 69,000 | 29.1 | 0.180 | 0.410 | 0.010 | 0.005 | 0.040 | 0.270 | 0.000 | 0.070 | 0.001 | 4 |
|  | 701A |  | A-36 |  |  | JJ4744 | 50,500 | 71,900 | 30.0 | 0.150 | 1.060 | 0.010 | 0.035 | 0.240 | 0.270 | 0.002 | 0.090 | 0.021 | 4 |
| 12 | 729G | TS 8X6X3/16X8-0" SLEEVE | A-500 |  |  | 0173175 | 55,871 | 74,495 | 31.0 | 0.160 | 0.610 | 0.012 | 0.009 | 0.010 | 0.030 | 0.000 | 0.030 | 0.000 | 4 |
| 15 | 736G | 5'TUBE SL/ $1888^{\prime \prime} \mathrm{X6} 6$ "X8"FLA | A-500 |  |  | 0173175 | 55,871 | 74,495 | 31.0 | 0.160 | 0.610 | 0.012 | 0.009 | 0.010 | 0.030 | 0.000 | 0.030 | 0.000 | 4 |
| $\underline{12}$ | ${ }^{749 \mathrm{G}}$ | TS 8X6X3/16X6'0" SLEEVE | A-500 |  |  | 0173175 | 55,871 | 74,495 | 31.0 | 0.160 | 0.610 | 0.012 | 0.009 | 0.010 | 0.030 | 0.000 | 0.030 | 0.000 | 4 |
| 5 | 783A | 5/8X8X8 BEAR PL 3/16 STP | A-36 |  |  | 10903960 | 56,000 | 79,500 | 28.0 | 0.180 | 0.810 | 0.009 | 0.005 | 0.020 | 0.100 | 0.012 | 0.030 | 0.000 | 4 |
|  | 783A |  | A-36 |  |  | DL13106973 | 57,000 | 72,000 | 22.0 | 0.160 | 0.720 | 0.012 | 0.022 | 0.190 | 0.360 | 0.002 | 0.120 | 0.050 | 4 |
| 20 | 3000 G | CBL 3/4X6'6/DBL | HW |  |  | 99692 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 25 | 4063B | WD 610 POST $6 \times 8$ CRT | HW |  |  | 43360 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 15 | 4147B | WD 3'9 POST 5.5"X7.5" | HW |  |  | 2401 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 20 | 15000G | $6^{\prime} 0$ SYT PST/8.5/31" GR HT | A-36 |  |  | 34940 | 46,000 | 66,000 | 25.3 | 0.130 | 0.640 | 0.012 | 0.043 | 0.220 | 0.310 | 0.001 | 0.100 | 0.002 | 4 |
| 10 | 19948G | .135(10Ga)X1.75X1.75 | HW |  |  | P34744 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2 | 33795 G | SYT-3"AN STRT 3-HL 6 6 6 | A-36 |  |  | JJ6421 | 53,600 | 73,400 | 31.3 | 0.140 | 1.050 | 0.009 | 0.028 | 0.210 | 0.280 | 0.000 | 0.100 | 0.022 | 4 |
| 4 | 34053A | SRT-31 TRM UP PST ${ }^{2} 6.625$ | A-36 |  |  | JJ5463 | 56,300 | 77,700 | 31.3 | 0.170 | 1.070 | 0.009 | 0.016 | 0.240 | 0.220 | 0.002 | 0.080 | 0.020 | 4 |

Figure A-25. Foundation Tubes, Test Nos. MGSPCB-1 through MGSPCB-3

```
725 E. O'Connior
```

Cima, OH

Customer：MDWEST MACH．\＆SUPPLY CO． P．O．BOX 1097

LINCOLN，NE 68501－1097

Sales Order： 1093497 Customer PO： 2030 BOL \＃ 43073
Docment \＃ 1

Print Date：6／30／08
Project：RESALE
Shipped To：RE
Use State：KS

Trixity Highway Products．LLC
Certificate of Compliance For Trinity industries，Inc．＊＊SLOTTED RAIL TERMINAL＊＊ NCHRP Report 350 Compliant


Ipon delivery，all materials subject to Trinity Highway Products，LLC Storage Stain Policy No．LG－002．
© W．$L$ STEEL USED WAS MEL TED AND MANUFACTURED IN USA AND COMPLIBS WITH THE BUY AMERICA ACT
LL GUARDRAIL MEETS AASHTO M－180，ALL STRUCTURAL STEEL MEETS ASTM A3G
LL OTHER GALVANIZED MATERIAL CONFORMS WITH ASTM－123．
品 10 IS COMPLY WTTH ASTM A－307 SPECIFICATIONS AND ARE GALVANIZED IW ACCORDANCE WITH ASTM A－I53，UNLBSS OTHERWISE STATED

（4＂DIA CABLE $6 X 19$ ZDNC COATED SWAGED END AISI C－1035 STEEL ANNEALED STMD $1^{1 "}$ DIA．ASTM 449 AASHTO M30，TYPETI BREAKING
OTRENGTH－49100LB
diate of Ohio，County of Allen Swom and Subscribed beforentethis soth day of June， 2008
岕 otary Public：
Trinity Highway Products， 11 C Certified By：


Figure A－26．Ground Strut Assembly，Test Nos．MGSPCB－1 through MGSPCB－3



Upw delivery, ail materials subiecito Truxity Eighway Products, LLC Stwage Stain Pohicy No. LG-0日2.

AIL GUARDRAIL MEETS AASFTO M-180, ALL STRUCTURAL STEEL MEETS ASTM A 36
ACLOTEER GALVATEZED MATERIAE CONFORMS WITH ASTM-123.


 STRBNGTH-49 100 LE



## Certified Analysis

Trinity Highway Products, LLC
550 East Robb Ave.
Lima, OH 45801
Customer: MIDWEST MACH.\& SUPPLY CO.
P. O. BOX 703

MILFORD, NE 68405
Order Number: . 1145215
Customer PO: 2441
BOL Number: 61905
Document \#: 1
Shipped To: NE
Use State: KS
Project: RESALE


As of: $4 / 15 / 11$

| Qty | Part\# | Description | Spec | CL | TY | Heat Codel Heat ${ }_{\text {\% }}$ | Vicid | TS | Elg | c | Mn | $p$ | s | Si | Cu | Cl | Cr | $\mathrm{V}_{\mathrm{n}} \mathrm{A}$ | ACW |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 206G | T12/63/3 | M-180 | A | 2 | 140734 | 64,240 | 82,640 | 26.4 | 0.190 | 0.7400 | 0.0150 | 0.006 | 0.010 | 0.110 | 0.000 | 0.060 | 0.000 | 4 |
|  |  |  | M-1 180 | A | 2 | 139587 | 64,220 | 81,750 | 28.5 | 0.190 | 0.720 | 0.014 | 0.003 | 0.020 | 0.130 | 0.000 | 0.050 | 0.002 | 4 |
|  |  |  | M-180 | A | 2 | 139588 | 63,850 | 82,080 | 24.9 | 0.200 | 0.730 | 0.012 | 2.004 | 0.020 | 0.140 | 0.000 | 00.050 | 0.002 | 4 |
|  |  |  | M-180 | A | 2 | 139589 | 55,670 | 74,810 | 27.7 | 0.190 | 0.720 | 0.012 | 0.003 | 0.020 | 0.130 | 0.000 | 00.050 | 0.002 | 4 |
|  |  |  | M-180 | A | 2 | 140733 | 59,000 | 78,200 | 28.1 | 0.190 | 0.740 | 0.015 | 50006 | 0.010 | 0.120 | 0.000 | 00.070 | 0.001 | 4 |
| 55 | 2600 | T12/25/6'3/3 | M-180 | A | 2 | 139588 | 63,350 | 82,080 | 24.9 | 0.200 | 0.730 | 0.012 | 0.004 | 0.020 | 0.140 | 0.00 | 0.050 | 0.002 | 4 |
|  |  |  | M-180 | A | 2 | 139206 | 61,730 | 78,580 | 26.0 | 0.180 | 0.710 | 00.012 | 20.004 | 0.020 | 0.140 | 0.000 | 00.050 | 0.001 | 4 |
|  |  |  | M-180 | A | 2 | 139587 | 64,220 | 81,750 | 28.5 | 0.190 | 0.720 | 00.014 | 40.003 | 0.020 | 0.130 | 0.000 | 00.060 | 0.002 | 4 |
|  |  |  | M-180 | A | 2 | 140733 | 59.000 | 78,200 | 28.1 | 0.150 | 0.740 | 00.015 | 50.006 | 0.010 | 0.120 | 0.000 | 00.070 | 0.001 | 4 |
|  |  |  | M-180 | A | 2 | 140734 | 64,240 | 82,640 | 26.4 | 0.190 | 0.740 | 00.015 | 50.006 | 0.010 | 0.110 | 0.000 | 00.060 | 0.000 | 4 |
|  | 260 C |  | M-180 | A | 2 | 140734 | 64,240 | \$2,640 | 26.4 | 0.190 | 0.740 | 0.015 | 0.006 | 0.010 | 0.110 | 0.00 | 0.060 | 0.000 | 4 |
|  |  |  | M-180 | A | 2 | 139587 | 64,220 | 81,750 | 28.5 | 0.190 | 0.720 | 0.014 | 40.003 | 0.020 | 0.130 | 0.000 | 0.060 | 0.002 | 4 |
|  |  |  | M-180 | A. | 2 | 139588 | 63,850 | 82,080 | 24.9 | 0.200 | 0.730 | 30.012 | 20.004 | 0.020 | 0.140 | 0.000 | 00.050 | 0.002 | 4 |
|  |  |  | M-180 | A | 2 | 139589 | 55,670 | 74,810 | 27.7 | 0.190 | 0.720 | 00.012 | 20.003 | 30.020 | 0.130 | 0.000 | 00.060 | 0.002 | 4 |
|  |  |  | M-180 | A | 2 | 140733 | 59,000 | 78,200 | 28.1 | 0.190 | 0.740 | 00.015 | 50.006 | 0.010 | 0.120 | 0.000 | 000070 | 0.001 | 4 |
| 26 | 701A | $25 \times 11.75 \times 16 \mathrm{CAB}$ ANC | A-36 |  |  | *911470 | 51,460 | 71,280 | 27.5 | 0.120 | 0.800 | 0.015 | 0.030 | 0.190 | 0.300 | 0.00 | 0.090 | 0.023 | 4 |
|  | 701A |  | A-36 |  |  | N3540A | 46,200 | 65,000 | 31.0 | 0.120 | 0.380 | 0.010 | 0.019 | 0.010 | 0.180 | 0.00 | 0.070 | 0.001 | 4 |
| 24 | 7296 | TS $8 \times 6 \times 3 / 16 \times 8^{-} \cdot 0{ }^{\prime \prime}$ SLEEVE | A-500 |  |  | N4747 | 63,548 | 85,106 | 27.0 | 0.150 | 0.610 | 0.013 | 0.001 | 0.040 | 0.160 | 0.00 | 0.160 | 0.004 | 4. |
| 24 | 7400 | TS $5 \times 6 \times 3 / 16 \times 6$-0 $0^{\prime \prime}$ SLEEVE | A-500 |  |  | N4747 | 65,548 | 85.105 | 27.0 | 0.150 | 0.610 | 0.013 | 0.001 | 0.040 | 0.160 | 0.00 | 0.160 | 0.004 | 4 |
| 22 | 782 C | 5/8"X8"X8" BEAR PLOF | Es-36 |  |  | 18486 | 49,000 | 78,000 | 25.1 | 0.210 | 0.860 | 0.021 | 0.036 | 0.250 | 0.260 | 0.00 | 0.170 | 0.014 | 4 |
| 25 | 974 G | T12/TRANS RAIL/6'3"3'1.5 | M-180 | A | 2 | 140755 | 61,390 | 30,240 | 27.1 | 0.200 | 0.740 | 0.014 | 0.005 | 0.010 | 0.120 | 0.00 | 0.070 | 0.001 | 4 |

Figure A-29. Anchor Bracket Assembly, Test Nos. MGSPCB-1 through MGSPCB-3


THE CHEMICAL, PHYSICAL, OR MECHANICAL TESTS REPORTED ABOVE ACCURATELY REFLECT INFORMATION AS CONTAINED IN THE RECORDS OF THE CORPORATION.
Figure A-30. Blockout Mounting Plates, Test Nos. MGSPCB-1 through MGSPCB-3


Figure A-31. Timber Blockouts, Test Nos. MGSPCB-1 through MGSPCB-3



Figure A-32. Timber Blockouts, Test Nos. MGSPCB-1 through MGSPCB-3

# General Testing Laboratories 

TELEPHONE (402)434-1891 FAX (402)434-2161
P. O. BOX 29529 UNCOLN, NEBRASKA 68529 June 23, 2015
Dave Borchers
Concrete Industries
6300 Cornhusker Hwy,
Lincoln, NE 68507

Dear Dave,
Below are the strength values to date for the UNL Barrier Curbs produced at Concrete Industries.

| Cast Date | Release Strength | 7 Day Strength 28 Day Strength |
| :--- | :---: | :---: |
| 6/8/15 | 5082 | 7838 |
| $6 / 9 / 15$ | 5444 | 7894 |
| $6 / 10 / 15$ | 5639 | 7937 |
| $6 / 11 / 15$ | 4639 | 6641 |
|  |  |  |
|  |  | General Testing Lab, |



Rod Leber, Manager R\#15-0531

Figure A-33. Portable Concrete Barriers, Test Nos. MGSPCB-1 through MGSPCB-3

| CO CERDAU | Certified materila test report |  |  |  | Page $1 /$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | CUSTOMER SHIP TO NEBCO INC ISION HAVELOCK,NE 6852 | CUSTOMER BILLTO CONCRETE INDUSTRIES INC LINCOLN,NE 68529-0529USA USA |  |  |  |
| us-mL-knoxville |  |  | ¢ |  |  |
| KNOXVILLE, TN 37921 USA | SALES ORDER $1877695 / 000010$ | OMER MATERILIN0 | SPECIFICATION / DATE or REVISION ASTM A615/A615M-14 |  |  |
| CUSTOMER PURCHASE ORDER NUMBER 111201 |  | DATE <br> 02/16/2015 |  |  |  |
|  | (1) |  | $\left.\begin{array}{c} \text { Mo } \\ 0.016 \end{array}\right)$ |  |  |
|  |  | $\begin{gathered} \text { M175 } \\ 676 \\ \hline \end{gathered}$ | $\begin{aligned} & \text { cidid } \\ & 8.000 \end{aligned}$ |  |  |
|  |  |  |  |  |  |
|  | Dition |  |  |  |  |
| COMMENTS / NOTES This grade meets the requirements for the following grades: |  |  |  |  |  |



Figure A-34. 3/4-in. (19-mm) Dia., 36-in. (914-mm) Long Anchor Loop Bar, Test Nos. MGSPCB-1 through MGSPCB-3


The above figures are certified chemical and physical test records as contained in the permanent records of company, We certify that these data are correct and in compliance with


Figure A-35. $1 / 2-\mathrm{in}$. (13-mm) Dia., 72-in. (1,829-mm) Long Form Bar and $1 / 2-\mathrm{in}$. (13-mm) Dia., 146-in. (3,708-mm) Long Longitudinal Bar, Test Nos. MGSPCB-1 through MGSPCB-3



# ABC COATING CO. OF MINNESOTA, INC. 



## AN ACUÑA CO.

January 5, 2015

To Whom It May Concem:

All "Epoxy Coated Reinforcing Steel "supplied to Construction jobsites, from ABC Coating Co, is manufactured, coated and fabricated in the United States of America.

Complete process is done at ABC Coating Co - Minnesota, located in Minneapolis, MN .

We are currently using Axalta, 7-2719 Epoxy Fusion Bonded Coating .
Reinforcing steel supplied is made in the USA. Mill certificates are Available upon request .

We currently coat and fabricate in accordance with: ASTM-A775M-07b, specifications.

Sincerely,


Fred Rocha
Vice-President
ABC Coating Co - Minnesota

Figure A-37. Epoxy Coated Reinforcing Steel, Test Nos. MGSPCB-1 through MGSPCB-3

# ABC COATING CO. OF MINNESOTA, INC. 



3200 COMO AVENUE SE
MINNEAPOLIS, MN 55414
(612) 378-1855

FAX (612) 378-3262
DATE SHIPPED :
ABC JOB NO.:
CE 458
CUSTOMER:
PONCRETE INDUSTRIES
P.O.\# :

| CONTR: | CONCRETE INDUSTRIES |
| :--- | :--- |
| COUNTY: | LINCOLN, NE |
| PRONECT: | STOCK |
| RELEASE: | $7 E, 66 E$ |
|  | 72 CITY CURB INLET TOPS |

WE CERTIFY THAT THE FOLLOWING DESCRIBED BAR MATERIAL HAS BEEN CLEANED, COATED WITH 3M \#413 OR O'BRIEN 7-2719 OR VALSPAR \# 720A009 POWDER. INSPECTED IN ACCORDANCE WITH AND MEETS THE SPECIFICATION REQUIREMENTS OF THE NEBRASKA DEPARTMENT OF TRANSPORTATION AND ASTM A775-07b ,AASHTO M-284-06, ASTM D3963-01. MANUFACTURES CERTIFICATIONS FOR THE BAR MATERIAL ARE ON FILE

| MILL | HEAT | POWDER | SIZE | LBS | KG |
| :---: | :---: | :---: | :---: | :---: | :---: |
| AMERISTEEL | 5413087002 | H1401012620 | \#3/4 SM A706 | 2,178 | 988 |
| AMERISTEEL | 5714335802 | H1409024435 | \#4 (13MM) | 20,458 | 9,280 |
| AMERISTEEL | 5714661402 | H1410025461 | \#4 (13MM) | 18,997 | 8,617 |
| AMERISTEEL | 5714280502 | H1410025461 | $\# 4(13 M M)$ | 5,354 | 2,429 |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |



SUSCRIBED AND SWORN BEFORE ME, a Notary Public in and for the said County and State. On this 27th day of May, 2015.


My commission expires 1-31-17 Notary Public in and for Roseville, MN

畣ALL COATING, MANUFACTURING AND FABRICATION MAS OCCURRED IN THE UNITED STATES OF AMERICA

Figure A-38. $3 / 4$-in. (19-mm) Dia., 102-in. (2,591-mm), $91-\mathrm{in} . ~(2,311-\mathrm{mm})$, and $101-\mathrm{in}$. (2,565mm ) Long Connection Loop Bar, Test Nos. MGSPCB-1 through MGSPCB-3


Figure A-39. $3 / 4-\mathrm{in}$. (19-mm) Dia., 102-in. (2,591-mm), $91-\mathrm{in}$. (2,311-mm), and 101-in. (2,565-mm) Long Connection Loop Bar, Test Nos. MGSPCB-1 through MGSPCB-3

NORFOLK IRON \& METAL CO.

3001 N VICTORY RD
NORFOLK, NE 68702
$05 / 23 / 2015$
M.T.R. Cover Sheet
APOLLO STEEL CO

Order \#: 01056944
7200 AMANDA RD
LINCOLN, NE 68507 Customer PO: PO-08577

|  |  | Certifications For The Material You Ordered Are Listed Below <br> Thank You For Your Business |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Heat | Item | Item Description | Width | Length |
| 15100584 | 01344 | CR ROUND $1-1 / 4 \mathrm{Cl1018}$ | $20^{\prime}$ |  |

```
    Concrete Barrier Pins MGSPCB Barriers
    R#15-0531 H#15100584
    July 2015 SMT
```

Figure A-40. $1 \frac{1}{1} 4-\mathrm{in}$. (32-mm) Dia., 28 -in. (711-mm) Long Connector Pins, Test Nos. MGSPCB1 through MGSPCB-3

** Material Certifies to ASTM A108-13 unless otherwise noted


Figure A-41. 11/4-in. (32-mm) Dia., 28-in. (711-mm) Long Connector Pins, Test Nos. MGSPCB-1 through MGSPCB-3

## Appendix B. Vehicle Center of Gravity Determination

Test: MGSPCB-1
Vehicle:
RAM 1500
Vehicle CG Determination

| VEHICLE | Equipment | (lb) | (in.) | (lb-in.) |
| :---: | :---: | :---: | :---: | :---: |
| + | Unbalasted Truck (Curb) | 4977 | 28.45789 | 141634.9 |
| + | Brake receivers/wires | 6 | 52 | 312 |
| + | Brake Frame | 9 | 26 | 234 |
| + | Brake Cylinder (Nitrogen) | 28 | 28 | 784 |
| + | Strobe/Brake Battery | 5 | 32 | 160 |
| + | Hub | 26 | 14.8125 | 385.125 |
| + | CG Plate (EDRs) | 8 | 34 | 272 |
| - | Battery | -29 | 42 | -1218 |
| - | Oil | -9 | 20 | -180 |
| - | Interior | -72 | 27 | -1944 |
| - | Fuel | -163 | 21 | -3423 |
| - | Coolant | -6 | 35 | -210 |
| - | Washer fluid | 0 | 41 | 0 |
| BALLAST | Water | 112 | 23.5 | 2632 |
|  | Supplemental Battery | 14 | 26 | 364 |
|  | Misc. |  |  | 0 |
|  |  |  |  | 139803.1 |
|  | Estimated Total Weight (lb) | 4906 |  |  |
|  | Vertical CG Location (in.) | 28.49634 |  |  |

Wheel Base (in.)

| MASH Targets | 140.25 | Targets | Test Inertial |
| :--- | :---: | :---: | ---: |
| Test Inertial Weight (lb) | $5000 \pm 110$ | 4914 | Difference |
| Long CG (in.) | $63 \pm 4$ | 60.54 | -86.0 |
| Lat CG (in.) | NA | -0.56214 | -2.46474 |
| Vert CG (in.) | 28 or greater | 28.50 | 0.49634 |

Note: Long. CG is measured from front axle of test vehicle
Note: Lateral CG measured from centerline - positive to vehicle right (passenger) side
Note: Cells highlighted in red do not meet target requirements

| CURB WEIGHT (Ib) |  |  |
| :---: | :---: | :---: |
|  | Left | Right |
| Front | 1443 | 1386 |
| Rear | 1094 | 1054 |
| FRONT | 2829 lb |  |
| REAR | 2148 lb |  |
| TOTAL | 4977 lb |  |


| TEST INERTIAL WEIGHT (Ib) <br> (from scales) |  |  |
| :---: | :---: | :---: |
|  | Left | Right |
| Front | 1437 | 1356 |
| Rear | 1061 | 1060 |
| FRONT | 2793 |  |
| REAR | 2121 |  |
| TOTAL | 4914 |  |

Figure B-1. Vehicle Mass Distribution, Test No. MGSPCB-1

|  | MGSPCB-2 | Vehicle: Kia |
| :---: | :---: | :---: |
| VEHICLE | $\begin{array}{ll} & \text { Vehicle CG } \\ \text { Equipment }\end{array}$ | Determination Weight <br> (lb) |
| + | Unballasted Car (curb) | 2434 |
| + | Brake receivers/wires | 5 |
| + | Brake Actuator and Frame | 9 |
| + | Nitrogen Cylinder | 22 |
| + | Strobe/Brake Battery | 5 |
| + | Hub | 26 |
| + | Data Acquisition Tray | 13 |
| + | DTS Rack | 0 |
| - | Battery | -32 |
| - | Oil | -7 |
| - | Interior | -40 |
| - | Fuel | 0 |
| - | Coolant | -8 |
| - | Washer fluid | -7 |
| BALLAST | Water |  |
|  | Supplemental Battery | 14 |
|  | Misc. |  |
|  | Estimated Total Weight (Ib) | 2434 |

Roof Height (in.) $\quad 571 / 2$
Wheel base (in.) $985 / 8$

| MASH Targets | Targets | Test Inertial | Difference |
| :---: | :---: | :---: | :---: |
| Test Inertial Weight | 2420 (+/-)55 | 2436 | 16.0 |
| Long CG (in.) | 39 (+/-)4 | 36.03 | -2.96706 |
| Lat CG (in.) | NA | -7/9 | NA |
| Vert CG (in.) | NA | 22.43 | NA |

Note: Long. CG is measured from front axle of test vehicle
Note: Lateral CG measured from centerline - positive to vehicle right (passenger) side
Note: Cells Highlighted in Red do not meet target requirements

| CURB WEIGHT (Ib) |  |  |
| :---: | :---: | :---: |
|  | Left | Right |
| Front | 802 | 769 |
| Rear | 438 | 425 |
| FRONT | 1571 |  |
| REAR | 863 |  |
| TOTAL | 2434 |  |


| TEST INERTIAL WEIGHT (Ib) <br> (from scales) |  |  |
| :---: | :---: | :---: |
|  | Left | Right |
| Front | 790 | 756 |
| Rear | 461 | 429 |
| FRONT | 1546 |  |
| REAR | 890 |  |
| TOTAL | 2436 |  |

Figure B-2. Vehicle Mass Distribution, Test No. MGSPCB-2

| Test: MGSPCB-3 | Vehicle: | RAM 1500 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Vehicle CG Determination |  |  |  |  |  |
| VEHICLE | Equipment | Weight (lb.) | Vertical CG (in.) | Vertical M (lb-in.) |  |
| + | Unbalasted Truck (Curb) | 5017 | 29.05145 | 145751.13 |  |
| + | Brake receivers/wires | 7 | 54 | 378 |  |
| + | Brake Frame | 9 | 26.5 | 238.5 |  |
| + | Brake Cylinder (Nitrogen) | 22 | 30 | 660 |  |
| + | Strobe/Brake Battery | 5 | 31 | 155 |  |
| + | Hub | 19 | 15.125 | 287.375 |  |
| + | CG Plate (EDRs) | 8 | 32.25 | 258 |  |
| - | Battery | -43 | 42.5 | -1827.5 |  |
| - | Oil | -6 | 21 | -126 |  |
| - | Interior | -88 | 35 | -3080 |  |
| - | Fuel | -162 | 21 | -3402 |  |
| - | Coolant | -15 | 36 | -540 |  |
| - | Washer fluid | -8 | 32 | -256 |  |
|  | Water Ballast | 217 | 21 | 4557 |  |
|  | Supp. Battery | 14 | 26.5 | 371 |  |
|  | Misc. |  |  | 0 |  |
|  |  |  |  | 143424.5 |  |
|  | Estimated Total Weight (lb.) <br> Vertical CG Location (in.) | $\begin{array}{r} \hline 4996 \\ \hline 28.70787 \\ \hline \end{array}$ |  |  |  |
| Wheel Base (in.) | 140.5 |  |  |  |  |
| Center of Gravity | 2270P MASH Targets | T | est Inertial |  | Difference |
| Test Inertial Weight (lb.) | $5000 \pm 110$ |  | 5012 |  | 12.0 |
| Longitudinal CG (in.) | $63 \pm 4$ |  | 62.43 |  | -0.57113 |
| Lateral CG (in.) | NA |  | -0.83654 |  | NA |
| Vertical CG (in.) | 28 or greater |  | 28.71 |  | 0.70787 |

Note: Long. CG is measured from front axle of test vehicle
Note: Lateral CG measured from centerline - positive to vehicle right (passenger) side
Note: Cells highlighted in red do not meet target requirements

| CURB WEIGHT (lb.) |  |  |
| :---: | :---: | :---: |
|  | Left | Right |
| Front | 1464 | 1375 |
| Rear | 1093 | 1085 |
| FRONT | 2839 lb . |  |
| REAR | 2178 lb. |  |
| TOTAL | 5017 lb . |  |


| TEST INERTIAL WEIGHT (lb.) <br> (from scales) |  |  |
| :---: | :---: | :---: |
|  | Left | Right |
| Front | 1454 | 1331 |
| Rear | 1114 | 1113 |
| FRONT | 2785 |  |
| REAR | 2227 |  |
| TOTAL | 5012 |  |

Figure B-3. Vehicle Mass Distribution, Test No. MGSPCB-3

## Appendix C. Static Soil Tests



Figure C-1. Soil Strength, Initial Calibration Tests


Figure C-2. Static Soil Test, Test No. MGSPCB-1


Figure C-3. Static Soil Test, Test No. MGSPCB-2


Figure C-4. Static Soil Test, Test No. MGSPCB-3

## Appendix D. Vehicle Deformation Records



Figure D-1. Floor Pan Deformation Data - Set 1, Test No. MGSPCB-1


Figure D-2. Floor Pan Deformation Data - Set 2, Test No. MGSPCB-1

## VEHICLE PRE／POST CRUSH INTERIOR CRUSH－SET 1

TEST：MGSPCB－1
VEHICLE：Dodge RAM 1500

|  | POINT | $\begin{gathered} \mathrm{X} \\ \text { (in.) } \end{gathered}$ | $\begin{gathered} \mathrm{Y} \\ \text { (in.) } \end{gathered}$ | $\begin{gathered} \mathrm{Z} \\ \text { (in.) } \end{gathered}$ | $\begin{gathered} \mathrm{X} \\ \text { (in.) } \end{gathered}$ | $\begin{gathered} \mathrm{Y}^{\prime} \\ \text { (in.) } \end{gathered}$ | $\begin{gathered} \hline Z \\ \text { (in.) } \end{gathered}$ | $\begin{gathered} \Delta X \\ \text { (in.) } \end{gathered}$ | $\begin{aligned} & \Delta Y \\ & \text { (in.) } \end{aligned}$ | $\begin{gathered} \Delta Z \\ \text { (in.) } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { I } \\ \substack{C \\ \hline} \end{gathered}$ | 1 | 13.968 | －3．640 | 26.512 | 14.158 | －3．721 | 26.606 | 0.191 | －0．081 | 0.094 |
|  | 2 | 15.375 | 7.222 | 26.081 | 15.574 | 7.200 | 26.163 | 0.199 | －0．022 | 0.082 |
|  | 3 | 15.734 | 29.339 | 26.560 | 15.986 | 29.349 | 26.605 | 0.252 | 0.010 | 0.045 |
|  | 4 | 11.573 | －3．173 | 18.620 | 11.799 | －3．275 | 18.597 | 0.226 | －0．102 | －0．023 |
|  | 5 | 11.775 | 7.013 | 16.924 | 12.036 | 6.998 | 16.965 | 0.261 | －0．015 | 0.041 |
|  | 6 | 12.741 | 30.056 | 18.794 | 13.054 | 30.034 | 18.882 | 0.313 | －0．021 | 0.089 |
| $\frac{山}{\infty} \underset{\text { 山 }}{\stackrel{\rightharpoonup}{\gtrless}}$ | 7 | 20.733 | 31.980 | 7.381 | 20.965 | 31.471 | 7.371 | 0.232 | －0．509 | －0．009 |
|  | 8 | 20.272 | 32.438 | 2.418 | 20.619 | 31.878 | 2.392 | 0.347 | －0．560 | －0．026 |
|  | 9 | 26.342 | 32.132 | 6.650 | 26.777 | 31.834 | 6.674 | 0.435 | －0．298 | 0.024 |
|  | 10 | 12.924 | 32.841 | 22.741 | 12.621 | 32.868 | 22.801 | －0．304 | 0.027 | 0.059 |
|  | 11 | 0.046 | 32.700 | 23.743 | －0．200 | 33.045 | 23.904 | －0．245 | 0.346 | 0.161 |
|  | 12 | －12．523 | 32.478 | 24.648 | －12．687 | 33.034 | 24.819 | －0．164 | 0.556 | 0.172 |
|  | 13 | 10.230 | 33.897 | 5.531 | 9.850 | 33.472 | 5.636 | －0．380 | －0．425 | 0.105 |
|  | 14 | 2.422 | 33.865 | 4.905 | 2.042 | 33.808 | 5.141 | －0．380 | －0．058 | 0.237 |
|  | 15 | －13．186 | 34.149 | 5.002 | －13．386 | 35.021 | 5.183 | －0．200 | 0.871 | 0.181 |
| $\begin{aligned} & \text { U } \\ & \text { O } \\ & \text { O} \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |



Figure D－3．Occupant Compartment Deformation Data－Set 1，Test No．MGSPCB－1

## VEHICLE PRE/POST CRUSH INTERIOR CRUSH - SET 2

TEST: MGSPCB-1
VEHICLE: Dodge RAM 1500

|  | POINT | $\begin{gathered} \mathrm{X} \\ \text { (in.) } \end{gathered}$ | $\begin{gathered} \hline \mathrm{Y} \\ \text { (in.) } \end{gathered}$ | $\begin{gathered} \mathrm{Z} \\ \text { (in.) } \end{gathered}$ | $\begin{gathered} \hline X \\ \text { (in.) } \end{gathered}$ | $\begin{gathered} \mathrm{Y}^{\prime} \\ \text { (in.) } \end{gathered}$ | $\begin{gathered} \hline Z \\ \text { (in.) } \end{gathered}$ | $\begin{gathered} \Delta X \\ \text { (in.) } \end{gathered}$ | $\begin{aligned} & \hline \Delta Y \\ & \text { (in.) } \end{aligned}$ | $\begin{gathered} \Delta Z \\ \text { (in.) } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 31.755 | -0.027 | 27.012 | 31.852 | -0.223 | 26.949 | 0.096 | -0.195 | -0.062 |
|  | 2 | 33.199 | 10.917 | 26.832 | 33.314 | 10.698 | 26.757 | 0.115 | -0.219 | -0.075 |
|  | 3 | 33.633 | 32.975 | 27.748 | 33.727 | 32.806 | 27.610 | 0.094 | -0.169 | -0.138 |
|  | 4 | 29.249 | 0.651 | 19.226 | 29.369 | 0.417 | 19.123 | 0.119 | -0.234 | -0.103 |
|  | 5 | 29.445 | 10.865 | 17.710 | 29.548 | 10.638 | 17.670 | 0.103 | -0.228 | -0.040 |
|  | 6 | 30.540 | 33.820 | 20.097 | 30.611 | 33.652 | 19.916 | 0.072 | -0.168 | -0.181 |
|  | 7 | 38.275 | 36.018 | 8.557 | 38.374 | 35.321 | 8.288 | 0.099 | -0.697 | -0.269 |
|  | 8 | 37.790 | 36.591 | 3.573 | 37.874 | 35.809 | 3.393 | 0.084 | -0.782 | -0.181 |
|  | 9 | 44.003 | 36.173 | 7.705 | 44.125 | 35.687 | 7.434 | 0.123 | -0.486 | -0.271 |
| 山 <br> い ○ $\longleftarrow$ <br> $\sum$ | 10 | 30.790 | 36.555 | 24.060 | 30.439 | 36.444 | 23.920 | -0.351 | -0.111 | -0.140 |
|  | 11 | 17.933 | 36.425 | 25.308 | 17.621 | 36.618 | 25.349 | -0.311 | 0.193 | 0.041 |
|  | 12 | 5.402 | 36.217 | 26.478 | 5.111 | 36.595 | 26.658 | -0.291 | 0.378 | 0.181 |
|  | 13 | 27.748 | 38.003 | 6.924 | 27.155 | 37.364 | 6.902 | -0.593 | -0.640 | -0.022 |
|  | 14 | 19.966 | 37.999 | 6.538 | 19.350 | 37.732 | 6.674 | -0.616 | -0.267 | 0.136 |
|  | 15 | 4.398 | 38.343 | 6.756 | 3.883 | 38.940 | 7.021 | -0.515 | 0.597 | 0.265 |
| $\begin{aligned} & \text { U } \\ & \text { O } \\ & \text { O } \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |



Figure D-4. Occupant Compartment Deformation Data - Set 2, Test No. MGSPCB-1


Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. MGSPCB-1


Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. MGSPCB-1


Figure D-7. Floor Pan Deformation Data - Set 1, Test No. MGSPCB-2


Figure D-8. Floor Pan Deformation Data - Set 2, Test No. MGSPCB-2


Figure D-9. Occupant Compartment Deformation Data - Set 1, Test No. MGSPCB-2


Figure D-10. Occupant Compartment Deformation Data - Set 2, Test No. MGSPCB-2


Figure D-11. Exterior Vehicle Crush (NASS) - Front, Test No. MGSPCB-2


Figure D-12. Exterior Vehicle Crush (NASS) - Side, Test No. MGSPCB-2


Figure D-13. Floor Pan Deformation Data - Set 1, Test No. MGSPCB-3


Figure D-14. Floor Pan Deformation Data - Set 2, Test No. MGSPCB-3


Figure D-15. Occupant Compartment Deformation Data - Set 1, Test No. MGSPCB-3


Figure D-16. Occupant Compartment Deformation Data - Set 2, Test No. MGSPCB-3


Figure D-17. Exterior Vehicle Crush (NASS) - Front, Test No. MGSPCB-3


|  | in. | $(\mathrm{mm})$ |
| :--- | :--- | :--- |
| Distance from centerline to reference line $-\mathrm{L}_{\text {REF }}:$ | 45 | $(1143)$ |

Total Vehicle Length: $227.5 \quad$ (5779)
Width of contact and induced crush - Field L: 227 1/2 (5779)
Crush measurement spacing interval (L/5) - I: $45.5 \quad$ (1156)
Distance from vehicle c.g. to center of Field $L$ - $D_{\mathrm{FL}}:-111 / 3 \quad-(288)$
Width of Contact Damage: 227 1/2 (5779)
Distance from vehicle c.g. to center of contact damage - $D_{C}:-111 / 3 \quad-(288)$
NOTE: Enter "NA" for crush measurement if distance can not be measured (i.e., front of vehicle has been pushed inward or tire has been removed) NOTE: All values must be filled out above before crush measurements are filled out.

|  | Crush <br> Measurement |  |
| :---: | :---: | :---: |
|  | in. | (mm) |
| $\mathrm{C}_{1}$ | 10 | (254) |
| $\mathrm{C}_{2}$ | $53 / 4$ | (146) |
| $\mathrm{C}_{3}$ | $51 / 4$ | (133) |
| $\mathrm{C}_{4}$ | 6 | (152) |
| $\mathrm{C}_{5}$ | NA | NA |
| $\mathrm{C}_{6}$ | NA | NA |
| $\mathrm{C}_{\text {MAX }}$ | 17 3/4 | (451) |

Figure D-18. Exterior Vehicle Crush (NASS) - Side, Test No. MGSPCB-3

Appendix E. Accelerometer and Rate Transducer Data Plots, Test No. MGSPCB-1


Figure E-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. MGSPCB-1


Figure E-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. MGSPCB-1


Figure E-3. Longitudinal Occupant Displacement (SLICE-1), Test No. MGSPCB-1


Figure E-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. MGSPCB-1

Figure E-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. MGSPCB-1

## Lateral Change in Displacement - SLICE-1

MGSPCB-1


Figure E-6. Lateral Occupant Displacement (SLICE-1), Test No. MGSPCB-1


Figure E-7. Vehicle Angular Displacements (SLICE-1), Test No. MGSPCB-1


Figure E-8. Acceleration Severity Index (SLICE-1), Test No. MGSPCB-1


Figure E-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. MGSPCB-1


Figure E-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. MGSPCB-1


Figure E-11. Longitudinal Occupant Displacement (SLICE-2), Test No. MGSPCB-1


Figure E-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. MGSPCB-1

## Lateral Change in Velocity - SLICE-2

MGSPCB-1

CFC-180 Extracted Lateral change in velocity ( $\mathrm{m} / \mathrm{s}$ )
Figure E-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. MGSPCB-1

Figure E-14. Lateral Occupant Displacement (SLICE-2), Test No. MGSPCB-1


Figure E-15. Vehicle Angular Displacements (SLICE-2), Test No. MGSPCB-1

## Acceleration Severity Index (ASI) - SLICE-2

MGSPCB-1


Figure E-16. Acceleration Severity Index (SLICE-2), Test No. MGSPCB-1

## MGSPCB-1

DTS and ACM Comparisons - Secondary Impact


[^5]Figure E-17. ACM Longitudinal Acceleration Data Comparison for Secondary Impact, Test No. MGSPCB-1

MGSPCB-1

DTS and ACM Comparisons - Secondary Impact


Figure E-18. ACM Longitudinal Change in Velocity Data Comparison for Secondary Impact, Test No. MGSPCB-1

## Appendix F. Load Cell and String Potentiometer Data, Test No. MGSPCB-1

MIDWEST ROADSIDE SAFETY FACILITY
Load Cell Summary




Figure F-1. Load Cell Data, Test No. MGSPCB-1
MIDWEST ROADSIDE SAFETY FACILITY
String Potentiometer Summary
Test Information:
Test No: MGSPCB-1
Date: 7/20/2015
System / Test Article: PCB-MGS Transition
SP Location / Component: Upstream Cable Anchor
Additional Notes: None
String Potentiometer Information:

| String Pot No.: | 27039202 |  | Max. Displacement: | 1.98 in. |  |
| ---: | ---: | ---: | ---: | ---: | ---: |
| Calibration Factor: | 19.4483 | $\mathrm{mV} / \mathrm{V} / \mathrm{in}$. | Time of Max. Displacement: | 0.2505 sec |  |
| Input Voltage (excitation): | 9.99 | Volts |  | Event Duration: | 1.2 sec |
| Gain: | 1 |  |  | Final Displacement: | 0.96 in. |
| Full Scale Load: | 1 |  |  |  |  |
| Sample Rate: | 10000 Hz |  |  |  |  |
| Cutoff Frequency: | 100 Hz |  |  |  |  |




Figure F-2. String Potentiometer Data, Test No. MGSPCB-1

Appendix G. Accelerometer and Rate Transducer Data Plots, Test No. MGSPCB-2


Figure G-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. MGSPCB-2


Figure G-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. MGSPCB-2


Figure G-3. Longitudinal Occupant Displacement (SLICE-1), Test No. MGSPCB-2


Figure G-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. MGSPCB-2


Figure G-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. MGSPCB-2


Figure G-6. Lateral Occupant Displacement (SLICE-1), Test No. MGSPCB-2


Figure G-7. Vehicle Angular Displacements (SLICE-1), Test No. MGSPCB-2


Figure G-8. Acceleration Severity Index (SLICE-1), Test No. MGSPCB-2


Figure G-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. MGSPCB-2


Figure G-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. MGSPCB-2


Figure G-11. Longitudinal Occupant Displacement (SLICE-2), Test No. MGSPCB-2


Figure G-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. MGSPCB-2

## Lateral Change in Velocity - SLICE-2

MGSPCB-2


Figure G-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. MGSPCB-2


Figure G-14. Lateral Occupant Displacement (SLICE-2), Test No. MGSPCB-2


Figure G-15. Vehicle Angular Displacements (SLICE-2), Test No. MGSPCB-2


Figure G-16. Acceleration Severity Index (SLICE-2), Test No. MGSPCB-2

Appendix H. Accelerometer and Rate Transducer Data Plots, Test No. MGSPCB-3


Figure H-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. MGSPCB-3


Figure H-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. MGSPCB-3


Figure H-3. Longitudinal Occupant Displacement (SLICE-1), Test No. MGSPCB-3


Figure H-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. MGSPCB-3


Figure H-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. MGSPCB-3


Figure H-6. Lateral Occupant Displacement (SLICE-1), Test No. MGSPCB-3


Figure H-7. Vehicle Angular Displacements (SLICE-1), Test No. MGSPCB-3

## Acceleration Severity Index (ASI) - SLICE-1

MGSPCB-3


Figure H-8. Acceleration Severity Index (SLICE-1), Test No. MGSPCB-3


Figure H-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. MGSPCB-3


Figure H-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. MGSPCB-3


Figure H-11. Longitudinal Occupant Displacement (SLICE-2), Test No. MGSPCB-3


Figure H-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. MGSPCB-3

## Lateral Change in Velocity - SLICE-2

MGSPCB-3


Figure H-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. MGSPCB-3


Figure H-14. Lateral Occupant Displacement (SLICE-2), Test No. MGSPCB-3


Figure H-15. Vehicle Angular Displacements (SLICE-2), Test No. MGSPCB-3

## Acceleration Severity Index (ASI) - SLICE-2

MGSPCB-3


Figure H-16. Acceleration Severity Index (SLICE-2), Test No. MGSPCB-3

## END OF DOCUMENT


[^0]:    MwRSF Report No. TRP-03-335-1

[^1]:    MwRSF Report No. TRP-03-335-1

[^2]:    May 2, 2017
    MwRSF Report No. TRP-03-335-17

[^3]:    

[^4]:    MwRSF Report No. TRP-03-335-17

[^5]:    -     - DTS SLICE 1 Longitudinal CFC 180 Filtered Acceleration (g's) - - - DTS-SLICE 2 Longitudinal CFC 180 Filtered Acceleration (g's
    ——ACM Longitudinal Acceleration (g's)

